

UNIVERSITY COLLEGE DUBLIN

NATIONAL UNIVERSITY OF IRELAND, DUBLIN

SCIENCE

SESSION 2000/2001

CONTENTS Page Academic Advisory Meetings and Dates of Terms..... 5 Faculty Staff 6 **UNDERGRADUATE PROGRAMMES** Undergraduate Degrees offered in the Faculty of Science: 17 **Bachelor of Science (BSc) Honours in Computer Science** Bachelor of Science (BSc) Honours in Mathematical Science **Bachelor of Science (BSc) Honours in Theoretical Physics** Bachelor of Science (BSc) - Single Honours **Bachelor of Science (BSc) – Joint Honours** Bachelor of Science (BSc) Topical Degree - Honours or General Bachelor of Science (BSc) - One Subject General or Two Subject General Bachelor of Science (BSc) in Occupational Safety and Health Bachelor of Science (BSc) in Occupational Safety and Health Management (part time degree) Examination Regulations for Science Students 19 Course Regulations for Undergraduate Science Students 19 Syllabus of First Year Courses in Science: 34 Biology Chemistry 34 Computer Science 35 Computer Science (Hardware and Software Development) 35 Experimental Physics 36 36 Geology Mathematics 37 38 Mathematical Physics Syllabus of Courses for the Degree of BSc: 39 Biochemistry Botany 42 46 Cell and Molecular Biology Chemistry 48 Computer Science 53 60 Environmental Biology Environmental Geochemistry 62 Experimental Physics 63 70 Genetics 72 Geology 76 Geophysical Science

History and Philosophy of Science

77

CONTENTS (Contd.)	
Industrial Microbiology	77
Languages	80
Mathematics	81
Mathematical Physics	84
Mathematical Science	91
Pharmacology	93
Physiology	95
Plant Genetic Engineering	97
Psychology	99
Statistics	101
Theoretical Physics	106
Zoology	108
BSc Degree in Occupational Safety and Health	111
BSc Degree in Occupational Safety and Health Management (Part time degree)	113
BSc Degree in Medical Subjects for Medical Students or Graduates	114
0 0	
POSTGRADUATE PROGRAMMES	116
 Postgraduate Degrees, Diplomas and Certificates offered in the Faculty of Science: Degree of Doctor of Philosophy (PhD) Degree of Master of Science (MSc) Research (Mode I) Taught programmes (Modes II and III) Degree of Master of Applied Science (MApplSc) Higher Diploma Diploma Certificate 	
Admission and Entry Requirements for PhD Degree	116
Admission and Entry Requirements for MSc and MAppISc Degrees	117
Course details for Taught MSc Degrees (Mode II):	
Master of Science in Plant Molecular Biology	118
Master of Science in Cognitive Science	119
Master of Science in Radiological Sciences	119
Master of Science in Computation and Visualisation for Molecular Sciences	119
Course details for MApplSc Degrees:	120
Applied Physics	120
Computer Science	120
Environmental Science	120
Food Science	120
Safety, Health and Welfare at Work	120

3

CONTENTS (Contd.) Course details for Higher Diplomas, Diplomas and Certificates:..... 121 Higher Diploma in Computer Science 121 Higher Diploma in Computational Methods and Numerical Software 121 Higher Diploma in Mathematical Science 121 Higher Diploma in Statistics 122 Diploma in Safety, Health and Welfare at Work..... 122 Certificate in Safety and Health at Work 122 Degree of Doctor of Science (DSc) 122 SCHOLARSHIPS AND PRIZES AWARDED IN FACULTY OF SCIENCE 123 EUROPEAN CREDIT TRANSFER SYSTEM (ECTS)..... 125 TIMETABLES 126

ACADEMIC ADVISORY MEETINGS

First Science Students: Wednesday, 13 September 2000 - 2.45 p.m., Theatre A.

First Science students must attend this meeting. The advisory meeting commences with a talk from the Dean in Theatre A, Science Lecture Building. Representatives of the Science Departments will be available on the Science Lecture Building concourse during the afternoon for consultation on the course options in Science. While First Science students register before the start of the academic year, they are not required to finalise their subject choices until the end of the first week of term. Students register their subject choices with the Faculty Office during the week 18 - 22 September 2000.

Pre-Second Science: Wednesday, 21 February 2001 – 2.00 p.m., Theatre A. Additional information may be available from some departments around this time.

Third Science Students: Friday, 15 September 2000 - 2.30 p.m., Theatre A.

Third Science students must attend this meeting. The advisory meeting commences with a talk from the Dean in Theatre A, Science Lecture Building. Academic staff will be available on the Science Lecture Building concourse during the afternoon for consultation on the selection of course units. Students must complete and have staff sign their Course Registration Forms. Registration is completed when these forms have been handed into the Science Faculty Office on Tuesday, 19 September 2000.

DATES FOR ACADEMIC SESSION 2000/2001

Michaelmas Term (First Semester): Hilary/Trinity Terms (Second Semester):

18 September 2000 - 8 December 2000 8 January 2001 – 3 March 2001 26 March 2001 – 20 April 2001

Г

LIST OF STAFF

-

FA	FACULTY OFFICE	
Telephone No. 7	706 2355 Fax No. 706 2439	
Dean of the Faculty:	Professor Michael J. Kennedy	
Associate Dean (Postgraduate):	Professor Stephen Mayhew	
Associate Dean (First Year):	Thomas Hayden, BSc, PhD	
Faculty Administrator:	Barbara Goff	
Faculty Administrative Assistant:	Gillian Goodbody	

	B	BIOCHEMIS	STRY	
	Telephone No.	7061547	Fax No. 2837211	
Head of Department		Professor P	aul C. Engel	
Professor of Biochem	istry	Paul C. Eng	gel, BA (Oxon), DPh	il (Oxon)
Associate Professor of	f Biochemistry	(Sheffield	Mayhew, BSc (<i>Sheff</i> l) Ialthouse, BSc (<i>Lond</i>	
Lecturer in Biochemi	stry		Kinsella, BSc, PhD* w Masterson, BSc, F	
College Lecturer		Gethin McI Joan M. Ma (Manche Philip New	Butler, BA (<i>Dub</i>), PhI Bean, BA (<i>Dub</i>), PhE anning, MSc (<i>Manch</i> ster) sholme, BSc (<i>Birm</i>), Vorrall, BA (<i>Dub</i>), Ph	D (Dub) ester), PhD DPhil (Oxon)
Departmental Secreta	ry:	Annette For	de	

* Where degrees have been awarded by the National University of Ireland, the awarding university is omitted. In every other case the awarding university is listed in brackets.

BOTANY		
Telephone No.	7062253 Fax No. 7061153	
Head of Department	Professor Martin W. Steer	
Professor of Botany	Martin W. Steer, BSc (<i>Bristol</i>), PhD (<i>QUB</i>), DSc (<i>Bristol</i>), MRIA, FRMS, MIBioII, PresMSI	
Associate Professor of Botany	Gerard Doyle, BSc, PhD, MIBiolI Matthew A. Harmey, BSc, PhD, FIBiolI	
Lecturer in Botany	Derek T. Mitchell, BSc (<i>Sheffield</i>), PhD (<i>Sheffield</i>) Bruce A. Osborne, BA (<i>Stirling</i>), PhD (<i>Nottingham</i>) James White, BSc, MSc (<i>Wales</i>), DSc	
College Lecturer	Hubert Fuller, BSc Marinus L. Otte, MSc (<i>Vrije</i>), PhD (<i>Vrije</i>) Graham Wilson, BSc (<i>Lond</i>), PhD (<i>Birm</i>)	
College Lecturer (Molecular Genetics) Thomas F. Gallagher, BSc, PhD		
Departmental Secretary:	Jane Flaherty	

CELL AND MOLECULAR BIOLOGY

Telephone No. 7062253 Fax No. 7061153

Course Director

Professor Martin W. Steer

CHEMISTRY

Telephone No. 7062165 Fax No. 7062127

Head of Department and Director Professor Rory More O'Ferrall of Laboratories (2000 - 2002) Professor of Organic Chemistry A. Francis Hegarty, PhD, DSc, FRSC, MRIA Kenneth A. Dawson, MSc (QUB), DPhil (Oxon), Professor of Physical Chemistry MRIA

7

Associate Professor of Chemistry	Donald Fitzmaurice, BSc, PhD Rory A. More O'Ferrall, PhD (<i>Lond</i>) Robert O'Neill, BSc, PhD Howard W. Sidebottom, PhD (<i>St. Andrew's</i>)
Associate Professor of Inorganic Chemistry (Organometallic Chemistry)	Anthony R. Manning, PhD (Manchester)
Lecturer in Chemistry	Raphael D. Darcy, PhD, FICI William K. Glass, PhD (<i>QUB</i>), CChem, FRSC Earle W. Waghorne, PhD (<i>ANU</i>)
Lecturer in Inorganic Chemistry	Noel J. Fitzpatrick, PhD, FICI
College Lecturer	 Vitaly Buckin, MSc (<i>Moscow</i>), PhD (<i>Acad.Sci.</i> <i>USSR</i>) Michael Casey, BSc, PhD (<i>Lond</i>), DIC Declan G. Gilheany, BSc (<i>QUB</i>), PhD (<i>QUB</i>) Patrick J. Guiry, BSc, PhD Paul V. Murphy, BSc, PhD Donal O'Shea, BSc, PhD Wilhelm Risse, Vordiplom (<i>Marburg</i>), Diplom (<i>Marburg</i>), PhD (<i>Bristol</i>) Matthias Tacke, Diplom (<i>Münster</i>), PhD (<i>Münster</i>) Edward G. Timoshenko, MSc (<i>Moscow</i>), PhD (<i>Moscow</i>)
Assistant Lecturer	Grace Morgan, BSc (QUB), PGCE (QUB), PhD (OU) (temporary appointment: 1999-2001)

Departmental Secretary:

Kathy Murphy

COMPUTER SCIENCE

Telephone No. 7062469 *Fax No.* 2697262

Head of Department	Professor Mark T. Keane
Professor of Computer Science	Mark T. Keane, BA, MA (Dub), PhD (Dub)
Lecturer in Computer Science	Ahmed Patel, MSc (Dub), PhD (Dub)
College Lecturer	Julie Berndsen, MA (<i>Dub</i>), DPhil (<i>Bielefeld</i>) Joseph Carthy, BSc Arthur W.S. Cater, BA (<i>Cantab</i>), PhD (<i>Cantab</i>) Fred Cummins, BA (<i>Dub</i>), MA (<i>Indiana</i>), PhD (<i>Indiana</i>) Damian Dalton, BSc John Dunnion, MSc

College Lecturer (contd)	Franz H. Geiselbrechtinger, Diplom Mathematiker (Tech. Univ. Munich), Drrernat (Munich)
	Neil Hurley, MSc, PhD (<i>Dub</i>)
	M-Tahar Kechadi, BEng (Algeria), DEA (Lille),
	MSc (Lille), PhD (Lille)
	Nicholas Kushmerick, BSc (Washington), MS
	(Washington), PhD (Washington)
	Henry B. McLoughlin, BSc
	Mel Ó Cinneide, MSc
	Gregory O'Hare, MSc (Ulster)
	Ronan Reilly, BSc, PhD
	Michael Sherwood-Smith, BSc (St. Andrews), PhD
	Barry Smyth, BSc, PhD (Dub)

Departmental Secretary:

Patricia Geoghegan

ENVIRONMENTAL BIOLOGY

Programme Directors:

Botany

Industrial Microbiology

Zoology

Professor Gerard Doyle *Telephone No. 7062252* Evelyn M. Doyle, BSc, PhD *Telephone No. 7061300* Bret S. Danilowicz, BSc, PhD *Telephone No. 7062347*

ENVIRONMENTAL GEOCHEMISTRY

Telephone No. 706 2327

Programme Director:

J. Stephen Daly, BA (Dub), PhD (Keele), FGS

EXPERIMENTAL PHYSICS

Telephone No. 7062210 Fax No. 2837275

Acting Head of Department (1999-2001)

Professor Peter I. Mitchell

Professor of Experimental Physics

Alex Montwill, MSc, PhD, DSc, CPhys, FInstP, MRIA

9

Associate Professor of Experimental Physics	David J. Fegan, MSc, PhD, MRIA Brian P. McBreen, BSc, PhD, MRIA Peter I. Mitchell, BSc, PhD, CPhys, FInstP Gerard O'Sullivan, BSc, PhD, CPhys, MInstP
Lecturer in Experimental Physics	Ann Breslin, MSc (Lond), PhD, CPhys, MInstP James P. McLaughlin, MSc, PhD, CPhys, FInstP James O'Connor, MSc, PhD, CPhys, MInstP John A. Scott, MSc, PhD, CPhys, FInstP
College Lecturer	Padraig Dunne, BSc, PhD, CPhys, MInstP Hugh M. Grimley, BSc, PhD (<i>QUB</i>) Lorraine Hanlon, MSc, PhD Michael Hoey, BSc, PhD (<i>QUB</i>) Luis Leon Vintro, BSc (<i>Barcelona</i>), PhD Eón Ó Mongáin, MSc, PhD
Assistant Lecturer	John Quinn, BSc, PhD Emma Sokell, BA (Oxon), PhD (Manchester)
Departmental Secretary:	Marian Hanson

GENETICS

Director Genetics Teaching Programme: Mark Rogers, BA (Dub), PhD (Glasgow)

Biological Subject Co-ordinators:

Biochemistry	Dr G. Butler
	Telephone No. 7061583
Botany	Dr T. Gallagher
	Telephone No. 7062342
Industrial Microbiology	Dr P. Caffrey
	Telephone No. 7061396
Pharmacology	Dr F. Martin
	Telephone No. 7062808
Zoology	Dr M. Rogers
	Telephone No. 7062806

GEOLOGY

Telephone No. 7062331

Head of Department (1999-2002) Professor Patrick M. Shannon

Professor of Geology

Michael J. Kennedy, MA (*Dub*), PhD (*Dub*), FGS, CGeol

Fax No. 2837733

Associate Professor of Geology	Patrick M. Shannon, BSc, PhD, FInstPet
Lecturer in Geology	J. Stephen Daly, BA (<i>Dub</i>), PhD (<i>Keele</i>), FGS Ian D. Somerville, BSc (<i>QUB</i>), PhD (<i>QUB</i>), FGS
College Lecturer	Christopher J. Bean, BA, MSc, PhD (<i>Dub</i>) Peter Haughton, BA (<i>Dub</i>), PhD (<i>Glasgow</i>) P. Frank McDermott, PhD (<i>Open University</i>) Julian F. Menuge, BSc (<i>Leicester</i>), PhD (<i>Cantab</i>)
Departmental Secretary:	Sarah Procter

GEOPHYSICAL SCIENCE

Telephone No. 706 2140

Programme Director:

Christopher J. Bean, BA, MSc, PhD (Dub)

INDUSTRIAL MICROBIOLOGY

Telephone No.	7061512 Fax No. 7061183
Acting Head of Department	Professor Catherine T. Kelly
Professor of Industrial Microbiology	-
Associate Professor of Industrial Microbiology	Catherine T. Kelly, BSc, PhD
Lecturer in Industrial Microbiology	Caroline Hussey, BSc, PhD (Dub)
College Lecturer	 John P. Caffrey, BA (Dub), PhD (Dub) Nicholas J.W. Clipson, BSc (Newcastle), DPhil (Sussex) Evelyn M. Doyle, BSc, PhD James Bailey Gillespie, BA (Oxon), PhD (UWO) Aiden J. McLoughlin, BSc, PhD Wim Meijer, MSc (Groningen), PhD (Groningen) Mary E. Upton, MSc, PhD
Departmental Secretary:	Geraldine Neylan

MATHEMATICS		
Telephone No.	7068265 Fax No. 7061196	
Head of Department (1999-2002)	Professor David Lewis	
Professor of Mathematics II	Sean Dineen, DSc, PhD (Maryland)	
Associate Professor of Mathematics (Algebra)	Thomas J. Laffey, MSc, DPhil (Sussex), MRIA	
Associate Professor of Mathematics	 Stephen J. Gardiner, MSc (QUB), PhD (QUB), DSc (QUB) Roderick I.S. Gow, BA (Cantab), PhD (Liverpool) David Lewis, BSc, PhD, DSc 	
Lecturer in Mathematics	Fergus Gaines, MSc, PhD (<i>Cal Tech</i>) Wayne G. Sullivan, BS (<i>Georgia Inst. Tech.</i>), DPhil (<i>Oxon</i>)	
College Lecturer	 Christopher Boyd, BA (Dub), MSc (Dub), PhD Russell J. Higgs, BA (Liverpool), PhD (Liverpool) Kevin Hutchinson, MA, PhD (Cornell) Mícheál S.A. Ó Searcóid, BSc (Lond), HDip in Ed (Dub), MSc, PhD J.B. Quigley, MSc, PhD (Indiana) David A. Tipple, MSc, PhD (Manchester) Sarah Ziesler, BSc (Sussex), MSc (Lond), DPhil (Sussex) 	
Departmental Secretary:	Siobhan Purcell	

MATHEMATICAL PHYSICS

	Telephone No.	7068266	Fax No. 7061172
Head of Department		Professor Jo	seph V. Pulé
Professor of Mathema	tical Physics	-	
Associate Professor of Mathematical Physi		(Oxon), l Joseph V. Pr	ttewill, BA (Oxon), DPhil (Oxon), DSc
College Lecturer		Edward A. C	irmingham, BA (<i>Dub</i>), PhD (<i>Dub</i>) Cox, BSc (<i>QUB</i>), MSc, PhD BA (<i>Dub</i>), PhD (<i>Dub</i>)
Departmental Secretar	y:	Bridget Mar	gan
12			

MATHEMATICAL SCIENCE

Telephone No. 7068225 *Fax No.* 7061172

Course Director:

Professor Joseph Pulé

OCCUPATIONAL SAFETY AND HEALTH

Telephone No. 7061406 Fax No. 2830669

Course Director:

Dr Caroline Hussey

	PHARMACOLOGY
Telephon	e No. 7061557 Fax No. 2692749
Head of Department	Professor Michael P. Ryan
Professor of Pharmacology	Michael P. Ryan, BSc, PhD
Associate Professor of Pharmacology	Ciaran M. Regan, BSc, PhD Finian M. Martin, BSc, PhD
Lecturer in Pharmacology	Alan W. Baird, BSc (<i>Glasgow</i>), PhD (<i>Lond</i>), MIBiol Alan K. Keenan, BSc, PhD Kathy O'Boyle, BSc, PhD
College Lecturer	Carmel Hensey, BSc, PhD Paul Moynagh, BA (<i>Dub</i>), PhD Kay Ohlendieck, MSc (<i>Konstanz</i>), PhD
Departmental Secretary:	Colette O'Beirne

PHYSIOLOGY

Telephone No. 7067310 Fax No. 7067417

Professor of Physiology and Histology Ronan G. O'Regan, MD, BCh, BAO, BSc, PhD, MRIA

Associate Professor of Physiology	Paul McLoughlin, MB, BCh, BAO, BSc, PhD (Lond), MRCPI
Lecturer in Physiology	Dorothy M. McGeeney, BSc, PhD John B. Moynihan, BSc, PhD John O'Connor, BA (<i>Dub</i>), PhD (<i>Dub</i>)
College Lecturer	 Stuart Bund, BSc (Leicester), PhD (Leicester) Helen Harty, BSc (Sheffield), PhD (QUB) Caroline Herron, BSc (Southampton), PhD (Southampton) Christian Holscher, Diploma in Zoology (Tübingen), PhD (Open University) (Temporary appointment: 1997-2002) James F.X. Jones, MB, BCh, BAO, BSc, PhD Philip Nolan, MB, BCh, BAO, BSc Noel McCaffrey, MB, BChg, BAO, Dip Sport Med (Lond)

Departmental Secretary:

Geraldine Duggan

PLANT GENETIC ENGINEERING

Telephone No. 7062255 Fax No. 7061153

Course Director

Professor Matthew Harmey

PSYCHOLOGY

Telephone No. 7068363 *Fax No.* 7061181

Professor of Psychology

Ciaran Benson, BA, MA (Sussex), PhD,

Aidan Moran, MA, PhD, APsSI

Alan Carr, MA, PhD (Kingston)

Reg Psychol, FPsSI, CPsychol, AFBPsS

Associate Professor of Psychology

Lecturer in Psychology

College Lecturer

Adrian Brock, BSc (Manchester Poly), MPhil (Cantab), PhD (Toronto)
E. Teresa Burke, BSc, PhD
Margaret Daly, BA, HDip in Ed, DipPsych, MPsychSc (Psychotherapy)
Barbara Dooley, BA, PhD
Mary Flaherty, BA, PhD

Eiblis M. Hennessy, BA, PhD
Geraldine Moane, MSc, PhD (*Calif*)
Michael O'Connell, BA (*Dub*), MSc (*LSE*), PhD (*Dub*), Dip Stats (*Dub*)
Mark F. O'Reilly, BA, MA (*Illinois*), PhD (*Illinois*)
Christopher M. Simms, BA (*Dub*), PhD (*Dub*), MPsychSc (Psychotherapy)
Joan G. Tiernan, MA, PhD
Patricia Noonan Walsh, BA (*Newton*), MEd (*Tufts*), MSc (*Dub*), PhD (*Dub*)

Departmental Secretary:

Mairead Bolger

STATISTICS

	Telephone No.	7067152	Fax No. 7061186
Professor of Statistic	S	1	and, BSc (<i>Le Moyne</i>), MA ;), PhD (<i>Rochester</i>), DSc
Lecturer in Statistics		<i>(Reading),</i> Adrian Dunn Yudianto Pav <i>(Davis)</i>	onnolly, BSc, HDip in Ed, MSc PhD (<i>Dub</i>) e, BSc (<i>Lond</i>), PhD (<i>Dub</i>) witan, BSc (<i>Bogor</i>), MS (<i>Davis</i>), PhD Iliams, BA, MSc, PhD (<i>Manchester</i>)
College Lecturer		Gareth Colga	
Departmental Secreta	ary:	Marie Doyle	

THEORETICAL PHYSICS

Programme Directors:

Experimental Physics

Mathematical Physics

Professor Peter Mitchell *Telephone No. 706 2210* Professor Joseph Pulé *Telephone No. 706 8225*

	ZOOLOGY
Telephone No.	706 2265 Fax No. 706 1152
Professor of Zoology	Edward J. Duke, BSc, PhD (QUB), DSc
Associate Professor of Zoology	John Bracken, BSc, PhD
Lecturer in Zoology	Thomas M. Bolger, BSc, PhD Thomas J. Hayden, BSc, PhD Patrick Joyce, BSc, PhD Declan Murray, BSc, PhD Mark Rogers, BA (<i>Dub</i>), PhD (<i>Glasgow</i>) Michael F. Ryan, BSc, PhD (<i>Lond</i>)
College Lecturer	Bret S. Danilowicz, BSc (Syracuse), PhD (Duke) Catherine M. Nolan, BSc, PhD
Departmental Secretary:	Dorothy Allen

UNDERGRADUATE PROGRAMMES

The following undergraduate degree programmes are offered in the Faculty of Science:

FOUR-YEAR DEGREES:-

BACHELOR OF SCIENCE (BSc) HONOURS IN COMPUTER SCIENCE BACHELOR OF SCIENCE (BSc) HONOURS IN MATHEMATICAL SCIENCE BACHELOR OF SCIENCE (BSc) HONOURS IN THEORETICAL PHYSICS

BACHELOR OF SCIENCE (BSc) – SINGLE HONOURS offered in the following subjects:

Biochemistry Botany Chemistry Computer Science Experimental Physics Geology Industrial Microbiology Mathematics Mathematical Physics Pharmacology Physiology Physiology Statistics Zoology

BACHELOR OF SCIENCE (BSc) – JOINT HONOURS

offered as follows:

Genetics and Biological Subject

Genetics and one of the following biological subjects: Biochemistry, Botany, Industrial Microbiology, Pharmacology, Zoology.

Any two subjects in the Science Programme

Joint Honours Degrees may be taken in any two subjects offered in the Faculty of Science, provided the student has qualified to proceed to the Honours course in both subjects and has the approval of the two Departments concerned.

BACHELOR OF SCIENCE (BSc) TOPICAL DEGREE – HONOURS OR GENERAL offered in the following areas:

Cell and Molecular Biology Environmental Biology Geophysical Science Environmental Geochemistry Plant Genetic Engineering

The BSc Topical Degree may be awarded as a General BSc Degree, following **three years** of study, or as an Honours BSc Degree, following **four years** of study.

THREE-YEAR DEGREES:

 $\operatorname{BACHELOR}$ OF SCIENCE (BSc) - ONE SUBJECT GENERAL OR TWO SUBJECT GENERAL

offered in either one or two of the following subjects:

Biochemistry Botany Chemistry Computer Science Experimental Physics Geology Industrial Microbiology Mathematics Mathematical Physics Pharmacology Physiology Physiology Statistics Zoology

BACHELOR OF SCIENCE (BSc) in Occupational Safety and Health

PART-TIME DEGREE:

BACHELOR OF SCIENCE (BSc) in Occupational Safety and Health Management

EXAMINATION REGULATIONS FOR UNDERGRADUATE SCIENCE STUDENTS

Regulations governing all examinations are contained in *MARKS AND STANDANDS*. Students should consult this publication, copies of which are available in the Library.

COURSE REGULATIONS FOR UNDERGRADUATE SCIENCE STUDENTS

- Students should be aware that syllabus changes may be initiated at any time during their course of study at University College Dublin.
- Students entering the Faculty of Science are notified that entry to subjects in all years is dependent on the availability of places. Where more students indicate preferences than there are places, allocation will be made by Faculty on the basis of academic performance.

REGULATIONS FOR FIRST YEAR SCIENCE STUDENTS

ADVISORY MEETING FOR FIRST YEAR SCIENCE STUDENTS

Wednesday, 13 September 2000 - 2.45 p.m., Theatre A, Science Lecture Building.

The purpose of this meeting is to advise students on their individual choice of courses. First Science students must attend this meeting.

1. SELECTION OF COURSES

Students entering First Science must select **four** First Science subjects from among Biology, Chemistry, Computer Science, Experimental Physics, Geology, Mathematics and Mathematical Physics. They must attend for one academic year and present themselves for examination. The following combinations of First Science subjects are available:

	FILS	t Science Sub	,								
Combination Number	First Science Subjects										
	Biology	Chemistry	Comp Science	Exp Physics	Geology	Math	Math Physics				
A●	*	*		*		*					
В		*		*		*	*				
С		*		*	*	*					
D	*	*			*	*					
Е				*	*	*	*				
F			*	*		*	*				
G	*	*	*			*					
Н		*	*		*	*					
Ι			*	*	*	*					
J		*	*	*		*					
K			*		*	*	*				
L		*			*	*	*				
Μ		*	*	1	1	*	*				
Ν	*			*	*	*					
0	*		*	*		*					

First Science Subject Combinations

• Students wishing to pursue Physiology in Second Science must take Combination A.

• Students wishing to pursue a BSc in Occupational Safety and Health must take Combination A.

No other combination is acceptable.

Students in the Mathematical Science denominated entry programme must select from the First Science subject groupings F, K or M.

Students in the Theoretical Physics denominated entry programme must select from the First Science subject groupings B, E or F.

Students in the Computer Science denominated entry programme must select the two First Science Computer Science courses (COMP 1001, 1002), Mathematics and one of the following subjects: Biology, Chemistry, Experimental Physics or Mathematical Physics.

2. EXAMINATIONS

The First University Examination in Science is completed in the Summer. A Supplemental Examination is held in the Autumn. (The regulations governing this examination are contained in *Marks and Standards*, available for consultation in the Library.) Departments may hold examinations and continuous assessments throughout the year.

Award of Honours at Examinations

Honours are awarded at the Summer Examination only. General papers are set in Biology, Chemistry, Computer Science, Experimental Physics and Geology; Honours may be awarded if the appropriate standards are reached. To be eligible for Honours in

Mathematics and Mathematical Physics, candidates must take the Honours papers in these subjects. Repeat students are not eligible for Honours.

Exemption

Students who fail the examination as a whole but reach a passing grade in at least two subjects, will be exempt from further examination in those subjects. Where exemptions have been given, the remaining subject(s) must be passed at the same examination.

Pass by Compensation

Students may be allowed to pass their First Science Examination by passing three subjects (minimum 40%), and achieve 35-39% in the fourth subject, where the deficiency is compensated by excess marks in the other subjects.

Two-Year Rule

Students who do not complete the First University Examination in Science within two years from the date of entering the courses will be ineligible to remain in the Faculty of Science. Exemption from this regulation may be granted for grave reasons by the Academic Council on the recommendation of the Faculty of Science.

3. RE-ATTENDANCE AT FIRST SCIENCE

Students must apply to the Faculty of Science for permission to reattend First Science courses. Students will not be permitted to re-attend practical classes except for grave reasons and on the recommendation of the Faculty of Science.

4. SPECIAL REQUIREMENTS FOR FIRST YEAR STUDENTS WISHING TO PROCEED TO SOME SECOND YEAR COURSES

Computer Science

Students should be aware that they will not be permitted to enter the Second Year course in Computer Science unless they have gained a clear pass in Computer Science in the First Science Examination.

Four Year Honours Degree in Mathematics or Mathematical Physics

Students wishing to pursue a Four-Year Honours Degree in Mathematics or Mathematical Physics are required to attend the honours courses in these subjects in First and subsequent years. In order to proceed to the honours course in Second Science, a qualifying mark of at least 50% in the subject concerned must be obtained in the First Science examination, Summer or Autumn.

Mathematical Science

Students in the Mathematical Science stream must pass the First Science examination and obtain a minimum of 50% in the Honours courses in Mathematics and Mathematical

Physics. Students of Mathematical Science passing the First Science examination but gaining marks below these requirements revert to the General Science stream in Second Year.

Theoretical Physics

Students in the Theoretical Physics stream must pass the First Science examination and obtain a minimum of 55% in the Experimental Physics course, 50% in the Honours course in Mathematical Physics. Students of Theoretical Physics passing the First Science examination but gaining marks below these requirements revert to the General Science stream in Second Year.

ADMISSION TO SECOND YEAR SCIENCE SUBJECTS

ADVISORY MEETING FOR PRE-SECOND YEAR SCIENCE STUDENTS

Wednesday, 21 February 2001 - 2.00 p.m., Theatre A, Science Lecture Building.

The purpose of this meeting is to advise students on selecting their courses for Second Science. First Science students must attend this meeting.

- All First Science students must indicate their preference by completing an Application for Admission to Second Science Subjects Form. These forms are
- available from the Faculty Office following the advisory meetings and must be returned as directed.
- Students will be assigned to Second Science subjects by the Faculty based on the results of the First Science examinations.
- Although every effort is made to accommodate students in the subjects of their choice, entry to a number of the Second Science subjects is limited owing to laboratory space and staffing restrictions.

Supplemental advisory sessions may be arranged by some Departments around this time.

REGULATIONS FOR SECOND YEAR SCIENCE STUDENTS

1. ADMISSION TO SECOND SCIENCE

Students must have passed the First University Examination in Science.

2. TRANSFERRING FROM OTHER UCD FACULTIES TO SECOND SCIENCE

Such transfers are dependent on the availability of places in Second Science.

Actuarial and Financial Studies Students

Actuarial and Financial Studies students in the Faculty of Commerce wishing to transfer to Second Science in Computer Science, Mathematics and Statistics must have passed their First University Examination. Application for such acceptance must be made to the Faculty of Science.

Engineering Students

Engineering students wishing to transfer to Second Science must pass their First University Examination in Engineering and with the permission of the Faculty of Science may proceed to subject combinations that include three of the following: Experimental Physics, Mathematics, Mathematical Physics, Statistics. Applications for such acceptance must be made to the Faculty of Science.

3. SELECTION OF SUBJECTS

Students in Second Science study **three subjects.** Each subject consists of **four course units**, i.e. students take a **total of 12 units**. Each unit comprises **48 contact hours** (maximum) made up of lectures, laboratory practicals, field practicals and/or tutorials. Examination papers in any subject may be designed to test integrated knowledge, i.e. a single question may require knowledge drawn from more than one unit in that subject.

Second Science subjects are offered in Sets. Some subjects may have prerequisite First Science subjects. Students select three subjects, one from three of these Sets.

Table 1.Second Science Sets

Set I Mathematics

Set 2

Mathematical Physics, Zoology

Set 3

Botany, Experimental Physics, Pharmacology

Set 4

Chemistry, Psychology

Set 5

Computer Science, Industrial Microbiology, Physiology

Set 6

Biochemistry, Geology, Statistics

Table 2. First Science Pre-requisites for admission to Second Science Subject	ets
---	-----

Second Science Subjects		First Science Subjects								
	Biol	Chem	CS	EP	Geol	М	MP			
Biochemistry	*	*								
Botany	*									
Chemistry		*				*				
Computer Science			*			*				
Experimental Physics				*		*				
Geology					*					
Industrial Microbiology	*	*								
Mathematics						*				
Mathematical Physics						*	*			
Pharmacology	*	*								
Physiology	*	*		*		*				
Psychology										
Statistics						*				
Zoology	*	*								

	Biochem	Botany	Chem	Comp Sci	Exp Phys	Geology	Ind Micro	Maths	M Phys	Pharm	Physiol	Psychol	Stats	Zoology
Biochem		YES	YES		YES		YES	YES		YES	YES			YES
Botany	YES		YES	YES		YES	YES	YES				YES		YES
Chemistry	YES	YES		YES	YES	YES	YES	YES	YES	YES			YES	YES
Comp Sci		YES	YES		YES	YES		YES	YES			YES	YES	YES
Exp Phys	YES		YES	YES		YES		YES	YES		YES		YES	
Geology		YES	YES	YES	YES			YES	YES					YES
Ind Micro	YES	YES	YES					YES		YES			YES	YES
Maths	YES	YES	YES	YES	YES	YES	YES		YES	YES	YES	YES	YES	YES
M Physics			YES	YES	YES	YES		YES				YES	YES	
Pharm	YES		YES				YES	YES			YES	YES	YES	YES
Physiol	YES				YES			YES		YES		YES	YES	
Psychol		YES		YES				YES	YES	YES	YES		YES	YES
Statistics			YES	YES	YES		YES	YES	YES	YES	YES	YES		YES
Zoology	YES	YES	YES	YES		YES	YES	YES		YES		YES	YES	

Table 3. Second Science Subjects which may be taken together

- Subjects listed in the first column may only be paired with subjects listed along the top row as indicated by "YES". Biochemistry CAN be taken with Botany, Chemistry, Experimental Physics, Industrial Microbiology, Mathematics, Pharmacology, Physiology or Zoology; Biochemistry CANNOT be taken with Computer Science, Geology, Mathematical Physics, Psychology or Statistics.
- Having selected two subjects, check that your third choice can be taken <u>with both</u>, e.g. should you chose Botany and Zoology, you <u>cannot</u> take Statistics (Botany and Statistics are not a valid combination).
- No other combinations will be allowed. Some combinations may be excluded by the Timetable.
- Students taking Experimental Physics must also take Mathematics.
- Students taking Experimental Physics with Physiology cannot also take Biochemistry.
- Students taking Computer Science must also take Mathematics.
- Zoology cannot be taken with both Mathematics **and** Statistics.

4. SPECIAL REQUIREMENTS FOR SECOND YEAR STUDENTS WISHING TO PROCEED TO SOME THIRD YEAR HONOURS COURSES

In selecting their subjects, students should be aware of additional requirements for entry to some Third Science Honours courses.

- **Biochemistry**: Students wishing to pursue an Honours Degree in Biochemistry are recommended, but not required, to take Chemistry in second year.
- **Industrial Microbiology**: Students wishing to proceed to an Honours Degree in Industrial Microbiology are recommended to take Chemistry in second year.
- **Statistics**: Students wishing to pursue an Honours Degree in Statistics must have also selected Mathematics in second year.

5. SECOND SCIENCE COMPUTER SCIENCE (DENOMINATED ENTRY) PROGRAMME

Students in Computer Science (denominated entry) programme take Computer Science, Mathematics and one of the following subjects (taking prerequisites into account): Botany, Chemistry, Experimental Physics, Psychology and Statistics.

6. SECOND SCIENCE THEORETICAL PHYSICS PROGRAMME

Students in the Theoretical Physics programme take the prescribed courses in Experimental Physics, Mathematics and Mathematical Physics.

7. SECOND SCIENCE MATHEMATICAL SCIENCE PROGRAMME

Students in the Mathematical Science programme take the prescribed courses in Mathematics, Mathematical Physics and Statistics

8. THREE-YEAR HONOURS DEGREE IN MATHEMATICAL PHYSICS

Students in the Second Year of the three-year Honours Degree in Mathematical Physics take the prescribed courses in Mathematics and Mathematical Physics and are required to reach a Pass standard at the Second Science University Examination.

9. EXAMINATIONS

The Second University Examination in Science is completed in the Summer. A Supplemental Examination is held in the Autumn. (The regulations governing this examination are contained in *Marks and Standards*, available for consultation in the Library.) Some departments may hold examinations and continuous assessments throughout the year.

Award of Honours

Honours are awarded at the Summer Examination of the first year of sitting only. To be eligible for Honours in Mathematics or Mathematical Physics students must take the honours papers in these subjects.

Exemption

Students who fail to pass the Second Science Examination as a whole may be awarded exemptions in one or two subjects at the examination (c.f. *Marks and Standards*).

Students should be aware that where such exemptions have been awarded, they must present for examination in their three subjects if they wish to be considered for admission to a Third Science Honours course.

Pass by Compensation

Students may be allowed to pass their Second Science Examination by passing two subjects (minimum 40%), and achieve 35-39% in the third subject, where the deficiency is compensated by excess marks in the other subjects.

Two-Year Rule

Students must pass the Second University Examination in Science within two years of entering the courses. Exemption from this regulation may be granted for grave reasons by the Academic Council on the recommendation of the Faculty of Science.

10. RE-ATTENDANCE AT SECOND SCIENCE COURSES

Students may re-attend their courses with the approval of the department(s) concerned, provided that places remain available in the relevant subject. Where a student wishes to change a subject, formal permission of the Faculty must be sought.

ADMISSION TO THIRD YEAR SCIENCE COURSES

ADVISORY MEETING FOR THIRD SCIENCE STUDENTS

Third Science Students: Friday, 15 September 2000 - 2.30 p.m., Theatre A.

Third Science students must attend this meeting and select and obtain approval for the registration of their course units. The advisory meeting commences with a talk from the Dean in Theatre A, Science Lecture Building. Academic staff will be available on the Science Lecture Building concourse during the afternoon for consultation on the selection of course units. Students must complete and have staff sign their Course Registration Forms. Registration is completed when these forms have been handed into the Science Faculty Office on Tuesday, 19 September 2000.

Application for Honours or Topical Degrees

- All Second Science students wishing to proceed to an Honours or Topical Degree course must indicate their preference by completing an *Application for Admission to Third Science Honours/Topical Course Form.*
- These forms are available from the Faculty Office at the beginning of the Trinity Term and must be returned as directed by the end of the Trinity Term.
- Students will be assigned to places in Third Science courses by the relevent Department Head/Course Director based on the results of the Second Science examinations in Summer.

• Students reaching the qualifying standard at the repeat Autumn examinations will be accommodated in an Honours/Topical course provided places are still available. Such students should contact the relevant Department Head/Course Director.

SPECIAL REQUIREMENTS FOR ADMISSION TO SOME THIRD SCIENCE COURSES

Availability of Places in some Third Science Honours Courses

The number of places available in some Third Science Honours courses is limited by the availability of laboratory space, staffing and facilities. Qualification in a particular subject will not necessarily guarantee a place. Students should consult with the Heads of the Departments regarding the availability of places.

• Single Honours

Students qualify for admission to a Third Year honours course on the results of the Second University Examination in Science by passing all three subjects at the same examination (either Summer or Autumn) and reaching a minimum of 55% in the subject that the student proposes to study at honours level. A minimum of 60% will apply if the examination is passed in an academic year later than the academic year of entry to the courses or if it is passed by compensation. Exemption from this regulation may be granted for grave reasons by the Faculty of Science.

• Single or Joint Honours – Mathematics and Mathematical Physics

To qualify for admission to an honours course in Mathematics or Mathematical Physics students must take the honours papers in these subjects. In the case of Mathematical Physics, however, students who take the pass papers may qualify for admission to the Single Honours Degree Course, but not to the Joint Honours Degree Course, by obtaining a minimum of 65% in these papers. If the examination is passed in an academic year later than the academic year of entry to the courses, or if it is passed by compensation, then a minimum of 70% in the pass papers will apply.

Mathematical Science

To qualify for admission to the Third Year of the Mathematical Science degree, students must qualify for the third Science Honours Courses in at least two of the subjects, Mathematics, Mathematical Physics and Statistics, and, in addition, must obtain a minimum of 50% in the other subject. These qualifying standards must be gained at a single sitting, at either the Summer or Autumn examination. Students passing the examinations but gaining marks less than the requirements revert to the general Science stream.

Theoretical Physics

To qualify for admission to the Third Year of the Theoretical Physics degree, students must obtain the qualifying standard for admission to Honours courses in both Experimental Physics and Mathematical Physics, and in addition, must obtain a minimum of 50% in the Honours course in the Mathematics. These qualifying standards must be gained at a single sitting, at either the Summer or Autumn examination. Students passing the examinations but gaining marks less than the requirements revert to the general Science stream.

♦ Joint Honours Degrees

Students wishing to proceed to a Joint Honours Degree course must pass the Second Science Examination and reach a qualifying standard in the two subjects in which they wish to follow a joint honours degree at a single sitting of the Examination, Summer or Autumn. The approval of the Heads of the relevant departments must be obtained.

• Genetics and a Biological Subject

Students seeking admission to the Joint Honours Degree in Genetics and a Biological Subject, select one of the following biological subjects: Biochemistry, Botany, Industrial Microbiology, Pharmacology and Zoology. They must:-

- have followed a Second Science programme containing at least two biological subjects, one of which must be Biochemistry or Industrial Microbiology or Zoology and
- must pass the Second Science examination, obtaining the qualifying standard for admission to the Honours course in their chosen biological subject.

♦ Topical Degrees

Students wishing to proceed to a Topical Degree Course follow the Second Science programme outlined in the relevant Course Syllabus for that Topical Degree.

Admission to the Third Year of the Topical Degrees is granted by the Course Director, following consultation with the relevant departments. Admission is based on academic merit, subject to space and number restrictions in the departments concerned. Students must show a clear ability at the Second Science University Examination in the two subjects that form the core of the Topical Degree in Third Science.

REGULATIONS FOR THIRD YEAR SCIENCE STUDENTS

In Third Science, students study **10 units**. Each unit comprises **48 contact hours** (maximum) made up of lectures, laboratory practicals, field practicals and/or tutorials.

SINGLE HONOURS DEGREE

1. SELECTION OF UNITS

Students admitted to honours courses must attend, for one academic year, *eight units in their major subject and two other units.* The choice of optional units is at the discretion of the honours subject department. These optional units may be Third Year units from the honours subject or from other Third Year units offered in the Faculty of Science, including language units.

2. EXAMINATIONS

Major Subject

The Third University Examination in the major subject or the equivalent BSc Part IIA Examination will be taken in *eight units*. The examination must be passed at the first attempt. A pass by compensation may be granted in these examinations provided the candidate has reached the pass mark in *six units* and achieved an overall average of at least 40%. Students who fail these examinations will revert to BSc (General) courses.

Minor Units

The BSc Part I is taken in the *two optional units* (minor units). Students should pass these two units with an average of 40% with no less than 35% in one unit in the Summer Examination. Students failing minor units may repeat examinations in those units in the Autumn of the same year. On passing the Autumn Examination, candidates will be awarded a pass and assigned a numeric value of 40%.

Award of Honours

Honours are awarded (in the major subject) at the Summer Examination of the first year of sitting only.

Minimum required to continue in Honours Courses

To continue in the Honours course, students must obtain a *minimum average of at least* 45% in their ten units. Students who have passed the examination but obtain an average of less than 45% or who pass by compensation with an *average mark in two units of less than 35%* will be graduated with a BSc (Pass) Degree.

3. THEORETICAL PHYSICS

Students following the Theoretical Physics Degree programme will take a combination of Third and Fourth year courses as set out in the syllabus (pages 101-102). The choice of courses is approved by the Heads of the Departments of Experimental Physics and Mathematical Physics.

4. MATHEMATICAL SCIENCE

Students following the Mathematical Science Degree programme will take ten units from the Third year Honours programme of the three subjects with at least two units from each subject. The choice of courses must be approved by the Course Director.

5. THREE-YEAR HONOURS DEGREE IN MATHEMATICAL PHYSICS

Students following the three-year Honours Degree programme in Mathematical Physics are required to take a total of *eight approved courses* from those available in Mathematical Physics. A student's choice of courses will be subject to the approval of the Head of the Department. Students sit for the Final Examination for the Degree of BSc in Mathematical Physics. (The regulations governing this examination are contained in *Marks and Standards*, available for consultation in the Library.)

JOINT HONOURS DEGREE

1. APPROVAL OF SUBJECTS AND UNITS FOR JOINT HONOURS DEGREES

The combination of two subjects for a Joint Honours Degree must have the approval of the Heads of the two departments concerned. Students should pursue at least five units in each of the two subjects with an overall maximum total of twelve units. The selection of units must be approved by the two departments concerned.

2. AWARD OF HONOURS

Honours are awarded at the Summer Examination of the first year of sitting only.

BSc TOPICAL DEGREE PROGAMMES

1. DEGREES AWARDED FROM TOPICAL PROGRAMMES

The BSc Topical Degree may be awarded as a General BSc Degree, following three years of study, or as an Honours BSc Degree, following four years of study.

2. SELECTION OF UNITS

The BSc General Topical Degree will be taken in *ten units* made up of *eight core units* and an additional two units. The Course Directors will advise students on their choice of units.

3. EXAMINATIONS

The BSc General Topical Degree Examination will be held in the *ten selected units* following completion of the courses. A Supplemental Examination will be held in Autumn.

4. AWARD OF HONOURS

Honours are awarded based on performance in the core units at the Summer Examination of the first year of sitting only. (The regulations governing this examination are contained in *Marks and Standard*, available for consultation in the Library.)

5. QUALIFICATION FOR FINAL HONOURS YEAR

Students wishing to proceed to a BSc Honours Topical Degree must pass the BSc General Topical Degree Examination at the first attempt, obtaining a minimum average

of 55% *in six of the eight core units*. Students who fail to reach this standard but pass the examination will be awarded the BSc General Topical Degree.

GENERAL DEGREE – ONE OR TWO SUBJECT PROGRAMME

1. SELECTION OF UNITS

Students taking the BSc General Degree study *ten units* as part of either (a) a two subject programme consisting of *four units from each of two subjects* together with *two optional units*, or (b) a one subject programme made up of *eight units in one subject* together with *two optional units*.

The two optional units must be taken at the Third Science level. The main subject departments will advise students on the choice of units and must approve the students' ten units before they can be registered.

2. EXAMINATIONS

The Final Examination for the Degree of BSc (General) will be held in the *ten selected units* in the Summer following completion of the units. A Supplemental Examination will be held in the Autumn. (The regulations governing this examination are contained in *Marks and Standards*, available for consultation in the Library).

Exemption

Students who receive a mark of 40% in any unit may be recommended by the Examiners for exemption from further examination in that unit (c.f. *Marks and Standards*).

Pass by Compensation

A pass by compensation may be granted at the discretion of the Board of Examiners provided a candidate has passed at least *seven units* and has an *overall average* of 40%.

3. RE-ATTENDANCE AT COURSES

Permission to re-attend courses may be granted on application to the Faculty of Science and the relevant department(s).

6. ADMISSION TO HONOURS COURSES BASED ON THE BSc (GENERAL) DEGREE

Students who complete the BSc (General) Degree Examination at their first sitting and reach specified standards may be admitted to Honours courses, subject to the availability of places. Faculty does not allow admission to Honours courses based on supplemental or repeat BSc General examinations.

From a two-subject programme

Students who obtain an average of 55% in *four of the major subject units* and pass the examination may be admitted to a Third Science Honours course. The permission of the Head of Department of the major subject is required. Students so admitted to a Third

Science Honours course must attend a minimum of six units as recommended by the major subject Department.

In the case of Botany and Computer Science, students who obtain an average of 55% in *six appropriate units* from the major subject and pass the examination may be admitted to a Fourth Science Honours course. Permission of the Head of Department is required. Students following a two-subject programme will not be considered for admission to the Honours course in Industrial Microbiology.

From a one-subject programme

Students who obtain an average of 55% in *six of the major subject units* and pass the examination may be admitted to a Fourth Science Honours course, subject to the approval of the Department concerned.

REGULATIONS FOR FOURTH YEAR HONOURS SCIENCE STUDENTS

1. SELECTION OF COURSES

All Fourth Year Honours Science students select courses of study as indicated by the relevant Head of Departments or Course Directors.

2. EXAMINATIONS

Having passed the Third Year Honours Examinations, students must attend, for one academic year, courses in the major subject, and must present at the end of that academic year for the Final Examination for the Degree of BSc (Honours). The distribution of marks for the Final Examination will be provided to students by the Departments concerned.

Candidates may present only once for the BSc (Honours) Degree Examination or the BSc Honours Topical Degree Examination. Exemption from this regulation may be granted for grave reasons by the Academic Council on the recommendation of the Faculty of Science.

The BSc (Honours) Degree may be awarded with First Class Honours; Second Class Honours, Grade I; Second Class Honours, Grade II; Third Class Honours or at a Pass standard.

SYLLABUS OF FIRST YEAR COURSES IN SCIENCE

BIOL 1001: BIOLOGY

Three lectures and one practical class of three hours per week shared between the Departments of Botany and Zoology.

1. *Cell Biology and Genetics:* History of cell theory; macromolecules; preparation of tissues for light and electron microscopy; structure and function of cells; cell cycle; mitosis, meiosis; DNA structure and replication; gene expression; Mendel's Laws; Mendelian inheritance patterns in humans.

2. *Diversity of Life:* The structure, reproduction and evolutionary relationships of living organisms: bacteria, fungi and viruses - their relevance in the biosphere, as parasites and agents of disease, and their use in biotechnological processes: protists: animals - classification, study of the increasing complexity of multicellular organisation from the Porifera (sponges) through Coelenterates, Platyhelminthes, Nematodes, Annelids, Arthropods, Molluscs, Echinoderms and Chordates: plants - structure and function of plant cells, tissues and organs; plant tissue culture; life cycles of bryophytes, pteridophytes and seed plants.

3. *Animal and Plant Physiology:* Bioenergetics, tissue respiration and photosynthetic pathways; nutrition; circulatory systems; respiratory systems; excretion; muscles and movement; nervous systems; hormones; reproduction.

4. *Environmental Biology:* Plant and animal ecology; climate and biome distribution; adaptation of plants and animals in major biome types; environmental problems - desertification, destruction of rain forests, ecosystem ecology, energy transfers, ecosystem models and nutrient cycling.

5. *Evolution:* Darwin, neodarwinian theory, sources of evidence for evolution, macroevolution, outline of the fossil record, evolution of primates.

CHEM 1001: CHEMISTRY

Three lectures and one practical class per week.

1. Atoms and Molecules

Atomic theory of matter. Introduction to quantum mechanics. Nuclear theory and electronic structure of atoms. Valency and bonding. Molecules and stoichiometry.

2. Physical Chemistry

States of matter. Properties of gases. First law of thermodynamics. Endothermic and exothermic reactions. Entropy and free energy. Nature of chemical equilibrium. Law of mass action; external effects on equilibria. Application and interpretation of reaction rate data, with respect to elucidation of reaction mechanisms.

3. Inorganic Chemistry

Periodic classification of elements. Chemistry of selected elements. Transition elements and an introduction to co-ordination chemistry.

4. Organic Chemistry

Shapes and structures of organic compounds, conformational analysis and stereoisomerism. Substitution and elimination reactions; relative reactivity. Representation functional group chemistry.

5. Laboratory Work

Volumetric analysis. Physical chemistry experiments to illustrate the lecture material with emphasis on instrumentation.

COMP 1001: COMPUTER SCIENCE

This course is taken by all students taking Computer Science as a subject in First Science. There are three lectures per week plus programming practicals and tutorials.

1. Introduction to Computer Programming

Nature of computation; algorithms; correctness and efficiency of algorithms; basic complexity measures; sequence, selection and iteration constructs; program construction using these constructs; reasoning about programs; various methods of problem decomposition; reuse of existing software components.

2. Introduction to Information Technology

Basic computer hardware; practical usage of current software applications and operating systems; the Internet and World-Wide Web.

COMP 1002: HARDWARE AND SOFTWARE DEVELOPMENT

This course is taken by students in the Computer Science denominated entry programme, in addition to COMP 1001.

There are three lectures per week plus programming practicals and tutorials:

1. Formal Foundations

The role of mathematics and logic in Computer Science; Logic fundamentals: propositional and predicate logic and proof techniques.

2. Hardware

Boolean algebra. Introduction to combinational and sequential circuits.

3. Software Development

A group software development project involving the functional or logic programming paradigm.

EXPH 1001: EXPERIMENTAL PHYSICS

Lectures: Three lectures and one three-hour practical class per week.

A thematic approach to Experimental Physics is adopted in this introductory course, which does not assume any previous knowledge of the subject. Topics include: Physics at the atomic, molecular and macroscopic levels. Mechanics and the dynamics of large scale systems. Gravitation. Physics of fluids. Thermodynamics and thermal physics. Waves. Sound. Optics. Spectroscopy. Physics of solids. Electrons at rest and in motion. Electric fields. Electrical potential and capacitance. Magnetism and magnetic fields. Electromagnetic induction and alternating current flow. Photons and waves. Atomic physics. Nuclear physics and nuclear energy. In addition, contemporary developments in physics are used to illustrate the course content, where possible.

GEOL 1001: GEOLOGY

Three lectures and one two-hour practical class per week. The course is designed to provide a broad background in all the major aspects of Geology and to be interesting and stimulating. No previous knowledge of the subject is required. Four afternoon field classes to areas of particularly spectacular geology in the Dublin area are held in place of laboratory classes in the early and later part of the session.

- 1. The Earth's surface features and processes. Their origin and controls on their formation and development.
- 2. Shallow and deeper earth structures and processes. The crust, mantle and core. Geophysics and lithosphere plates. Formation and classification of faults, joints and folds.
- 3. Minerals. Their occurrence, identification and properties.
- 4. Rocks. Occurrence, classification, distribution and environments of igneous, sedimentary and metamorphic rocks.
- 5. Earth resources. Minerals, hydrocarbons, water resources, engineering geology and environmental geology.
- 6. Geologic time. Concepts, measurement of relative and absolute time. Radiometric dating, other concepts of relative dating and their historical development.
- 7. Origin of life and evolution. The fossil record, mass extinctions, sea level changes and ice ages. Development of floras and faunas through geological time.
- 8. Evolution of the Irish geological landscape, changing geological environments through time. Climates, marine incursions, volcanoes and mountains.

MATHEMATICS

MATH 1200: Mathematics Pass course MATH 1100: Mathematics Honours course

Either the Pass or the Honours course must be attended.

Pass Course

Four lectures per week.

Algebra

The elements of logic and set theory. Vectors in two and three dimensions. Matrices and systems of equations.

Calculus

Functions and Sets. Differential calculus, graphing and optimization. Integration, areas and volumes. Introduction to differential equations.

Honours Course

Four lectures per week.

Algebra

Vector geometry in two and three dimensions. Matrices and linear systems. Determinants, eigenvalues and eigenvectors.

Calculus

Limits of functions and continuity. Differentiation, extreme values, mean value theorem, applications. Riemann integration. Differential equations.

MATHEMATICAL PHYSICS

MAPH 1001: Mathematical Physics Pass Course MAPH 1101: Mathematical Physics Honours Course

The Common course and either the Pass or Honours course must be attended.

Lectures: Four per week

1. Mathematical Modelling and Numerical Methods

Common Course

First order differential equations: Examples of modelling leading to differential equations; homogeneous equations with constant coefficients; separable equations; integrating factors. Inhomogeneous equations. Numerical methods: Machine representation of numbers; root finding and numerical integration.

Pass Course

Numerical differentiation. Chaotic motion: the logistic equation. Central forces.

Honours Course

Numerical differentiation. Chaotic motion: the logistic equation. Linear second order differential equations: Independent solutions and Wronskians; reduction of order; variation of parameters; initial and boundary value problems. Fourier series.

2. Introduction to Mechanics

Common Course

Introduction to vectors, scalar product. Relative velocity. Statics: Force and moments. Particle dynamics: Newton's laws; motion in a line; momentum; impulsive motion; motion under a constant force; work, energy and power. Projectiles.

Pass Course

Harmonic oscillators with forcing, resonance. Conservative forces and potential energy in two dimensions. Stability and small oscillations. Circular motion. Dynamics of a rigid body in two dimensions: Centre of mass, the compound pendulum. Introduction to hydrostatics. Introduction to special relativity.

Honours Course

Air resistance. Harmonic oscillators, with damping and forcing; resonance. The vector product. Motion in three dimensions: angular momentum; dynamics of a system of particles; conservative forces and potential energy in three dimensions; stability and small oscillations. Cylindrical polar and spherical polar coordinates. Central forces: orbits and scattering. Scalar fields; the gradient operator.

SYLLABUS OF COURSES FOR THE DEGREE OF BACHELOR OF SCIENCE

SECOND, THIRD AND FOURTH YEARS

Each unit comprises 48 contact hours (maximum) made up of lectures, laboratory practicals, field practicals and/or tutorials.

Note: Not all units may be on offer in any one year.

BIOCHEMISTRY

Prerequisite Combination: (a), (d) or (g) in First Science.

Second Year Course for General and Honours Degrees

- BIOC 2001 *Structure, Evolution and Diversity* Structure and properties of the amino acids; introduction to protein structure and folding; biochemical spectroscopy. Nucleic acid structure and replication; mechanisms of transcription and translation. Protein evolution.
- BIOC 2002 *Bioenergetics, Structure & Metabolism* Properties of carbohydrates and lipids. Thermodynamics and the proton motive force. Bioenergetics and energy conservation. Metabolism of carbohydrates and lipids. Metabolic control.
- BIOC 2003 Applied Biochemistry Enzyme catalysis. Introduction to applied biochemistry; biochemical analysis; biosensors. Genetic manipulation; introduction to gene cloning.
- BIOC 2004 *Cell Communication & Immunology* Structure and functions of cell walls and membranes. Membrane transport & cell signalling. Introduction to immunology. Free radical defence mechanisms.

Third Year Course for General and Honours Degrees

Students taking Biochemistry as a subject for a General Degree will be required to take the four core units BIOC 3001 to BIOC 3004. Additional units may be chosen from BIOC 3005 to BIOC 3008.

BIOC 3001 Biochemistry of Nitrogen

Metabolism of dinitrogen, amino acids, purines, pyrimidines and nucleotides.

BIOC 3002 Biological Catalysts

Basic analysis of enzyme reaction rates. Chemical mechanism of enzyme action. Protein engineering, ribozymes and catalytic antibodies.

BIOC 3003 Biochemist's Toolkit

Survey of techniques and methods required for a modern biochemical approach to problems of biology, including absorption and emission spectroscopy such as NMR and fluorescence; separation techniques; techniques for analysis and manipulation of nucleic acids and proteins, etc.

BIOC 3004 Gene Manipulation & Regulation

DNA replication; control of gene expression in prokaryotes and eukaryotes; recombinant DNA technology in inudstry and medicine; cloning and expression of heterologous genes; generation of transgenic organisms; PCR and DNA fingerprinting.

BIOC 3005 Disease and Disease Resistance

Discussion of molecular basis of selected diseases such as diabetes, cardiovascular disease and cancer. Inherited disorders; gene therapy. The immune system. Blood clotting.

BIOC 3006 Cell Structure, Function, Communication

Cell structure, function, communication. Relationships between molecular organisation and function in mammalian cells. Biochemistry of cell signalling, neurotransmission, sensory transduction.

BIOC 3007 Advanced Enzymology X-ray crystallography of proteins. Kinetic analysis of multi-substrate enzymes, effects of pH and allosteric regulation.

BIOC 3008 Biochemistry and Environment

The environment as an entity; pollution as a challenge to biochemistry. Biochemical approaches to environmental remediation, protection and enhancement. Xenobiotics; the biochemical effects and transformations of compounds foreign to organisms and the environment.

Fourth Year Course for Honours Degree - BIOC 4000

BIOC 4001 Biochemical Immunology

Structure and function of ion-channels. Aetiology of Type-I & Type-II diabetes. Antigen presentation and activation of the adaptive immune system. Mechanisms of T-lymphocyte activation, deletion and anergy. Receptor and non-receptor Tyrosine Kinases and signal transduction in cells of the immune system. Cytokine networks.

BIOC 4002 Redox enzymes

The properties of enzyme redox centres found in enzymes are surveyed, with an emphasis on recent work. The redox properties of flavoproteins are studied in detail, using the electron carrier flavodoxin to illustrate how these properties are modulated by interactions with protein.

BIOC 4003 Neurotransmitters

Topics include neurotransmitter release, transport and synthesis. Structure and diversity of receptors in the CNS. Mechanisms of excitotoxicity and neurodegenerative disease.

BIOC 4004 Protein structure

This course addresses two main questions; "What are the principles stabilising the main classes of protein fold", and "How do porteins achieve their folded state". The relationship between structure and function is also discussed using complex structures such as ATP synthase, the K^+ channel and cytochrome oxidase.

BIOC 4005 Extracellular matrix

Molecular basis of connective tissue structures and mechanical properties. Collagen and proteoglycan types, structures, biosynthesis and extracellular assembly.

BIOC 4006 Oxygen and Life

"Fitness" of dioxygen. Electronic structure, redox potentials, ionisation constants. Fenton, Haber-Weiss reactions. Dioxygen reduction products: production, toxicity, detoxification. Dioxygen activating enzymes: superoxide dismutase. Singlet oxygen. Oxidative stress, lipid peroxidation. Oxygen free radicals in cell defence. Consumption and production: mitochondrial respiration, photophosphorylation and their regulation.

BIOC 4007 Complex modes of gene regulation

Investigation of aspects of regulation of gene expression: DNA topology and nucleosome structure; interaction of transcription factors with chromatin; identification of nuclear localisation signals; regulated nuclear localisation of transcription factors; nuclear gradients in Drosophila development; comparison of immune response pathways in Drosophila and mammals; effect of phosphorylation on nuclear transport.

BIOC 4008 Biological NMR

Basic NMR theory, relaxation mechanisms in small and large molelcules, optimising signal-to-noice, 1D-pulse sequences used in biological NMR, ¹³C-NMR of biological molecules, protein structure determination.

BIOC 4009 Cell signalling

This course details the signal transduction cascades of G-protein coupled receptors and heterotrimeric G proteins; growth factor receptor tyrosine kinases; monomeric G proteins; mitogen activated protein kinase (MAPK) and stress activated protein kinases (SAPKs). Attention is paid to structure/function aspects of signalling components and to integration of the various cascades.

BIOC 4010 Proteases and inhibitors

Introduction to classes and mechanisms of porteases and protease inhibitors. Extracellular and intracellular proteolytic events including plasma cascades, proteasome protein degradation and antigen processing. Mechanisms of programmed cell death (apoptosis).

BIOC 4011 Cancer studies

BIOC 4012 Protein engineering

Academic and practical reasons for engineering proteins. Alternatives. Prerequisites: High-resolution structure, homology, conserved residues? Tyrosyl tRNA synthetase: H-bonds. Subtilisin: thermostability. Homology-based engineering: coenzyme specificity in disulphide reductases. Substrate specificity in α -hydroxyacid dehydrogenases. Engineering without 3-D structure: E2 lipoyl domains. Criteria of success. Limitations. Hybrid approaches; SDM/random. Amino acid dehydrogenases.

Two supervised projects are carried out, a library project and a laboratory-based research project. Oral and written reports are required for both of these and contribute to the final assessment.

BOTANY

Second Year Course for General and Honours Degrees

BOTN 2001 Biology of Fungi

A course dealing with growth, development and physiology of fungi – as organisms in the biosphere and in their biotechnological applications. Characteristic and noteworthy features of fungal structure and growth: osmotrophy and extracellular enzymes; nutritional requirements; responses to environment; hyphal tip growth, mycelium, differentiation and reproduction; spore characteristics, dispersal and germination.

- BOTN 2002 *Molecular Biology and Function of Chloroplasts & Mitochondria* Structure of chloroplasts and mitochondria. Light harvesting, energy transduction, electron transport, biogenesis, organellar DNA, translation systems, import and assembly of precursor proteins into functional complexes.
- BOTN 2003 Plant Anatomy and Morphology

Anatomical development of plants. The range and distribution of cell types, relationships between structure and function, structural aspects of cell differentiation. The structure and identification of woods. Development and morphology of vegetative and reproductive structures in conifers and flowering plants. Identification of plants in the Irish flora.

BOTN 2004 *Environment, Plants and Vegetation* Plant/environment interactions: plant ecotoxicology; soil; rhizosphere; nutrients; effects of and tolerance to salt, drought and pollutants. Vegetation and environment: saltmarshes, sand-dunes, heathlands, peatlands, grasslands and woodlands.

Third Year Course for General and Honours Degrees

- BOTN 3001 *Diversity and Ecology of Fungi* Life cycles, morphology, and ecology of fungi. Examples of important fungal pathogens causing diseases of plants and animals along with aspects of host/pathogen relationships and control. Ecology of soil fungi including those associated with roots of plants.
- BOTN 3002 Plant Population Biology

Plant census – origins and development. Modular nature of plant growth and its demographic consequence. Life history – birth, growth, death; varieties of life history, including clonal growth. Intraspecific interactions – survival and fitness. Population and metapopulation structure and dynamics. Genetic structure of populations. Demography and conservation of rare populations.

BOTN 3003 Plant/Soil Interactions in Wetlands

Geochemistry of wetland soils: oxidation/reduction processes, chemical speciation and availability of nutrients. The rhizosphere: root/soil interactions, rhizosphere oxidation by wetland plants. Nutrient cycling. Behaviour of heavy metals and metalloids in soil and plants: uptake and translocation in plants, turnover by vegetation.

BOTN 3004 Growth & Nutrition Assimilation

Growth measurement patterns of growth in response to the environment. Plant growth regulators: assays, synthesis, transport and metabolism. Tropisms, problems with mechanics. Photosynthetic metabolism: interaction with light and nutrient supply. Nitrogen assimilation of plants; nitrogen fixation.

BOTN 3005 Cellular Trafficking

Synthesis and transport of proteins and carbohydrates for intracellular and extracellular destinations; endoplasmic reticulum, Golgi apparatus and secretion. Cellular water relations and ion transport. Cell walls, plasmodesmata and transfer cells. Root caps, root nodules, stomata, nectaries, salt glands, bladder traps, sensitive plants.

BOTN 3006 Seed Plant Reproduction

Breeding systems of gymnosperms and angiosperms. Genetic control of flower formation. Development of female gametophytes and pollen grains. Pollinstion, pollen tube growth mechanisms, gamete formation, fertilization and zygote

development. Incompatibility systems and male sterility. Sexual selection, preand post-zygotic. Species isolation mechanisms and their breakdown.

- BOTN 3007 Vegetation Ecology and Biogeography Vegetation description and analysis: field methods; the Braun-Blanquet (Zürich-Monpellier) approach to phytosociology; ordination – principles and computer-based techniques. Biogeography – studying plant distributions, impact of climate change, islands, Irish biogeography, the Burren.
- BOTN 3008 *Plant Biotechnology* Commercial exploitation of biosynthetic capacities of plants. Seed and gene plasma banks. Tissue and organ culture and its use in propagation and production of secondary metabolites: plant cell transformation, molecular probes in study of plant differentiation and development. Micro organisms as biofertilisers and biocontrol agents. Basic aspects of business administration.
- GENE 3001 Genetics 3001 is part of the Botany programme.

Fourth Year Courses for Honours Degree - BOTN 4000

The following courses are offered in a range of topics, reflecting the specialist interests of the Department's staff. Students must select their courses in consultation with the Head of Department.

BOTN 4001 Peatland Ecology and Conservation

Characteristics of peatland habitats. Ecology of peatland plants. European and world distribution of peatlands. Peatland classification systems. Variation in European peatlands. Peatland vegetation types. Irish peatlands - distribution, ecology, vegetation, habitat destruction, restoration and conservation.

BOTN 4002 Ecotoxicology

Pollutants in ecosystems. The behaviour of pollutants in, and their effects on, ecosystems; predictions of effects of pollutants in ecosystems, and biomonitoring of pollutants in the environment.

- BOTN 4003 *Evolution in Plant Populations* The existence of infraspecific genetic variation: ecotypes, clines. Gene flow in populations; neighbourhood size. Spatial and temporal scales of population differentiation. Natural selection in plant populations: life-cycle components of selection.
- BOTN 4004 *Mycorrhizal Symbiosis* Structure and function of the main mycorrhizal types. Mycorrhizal populations in forest, heathland and grassland ecosystems. The role of mycorrhizal associations in improving the nitrogen and phosphorus nutrition of trees, crops and heathland plants.

BOTN 4005 *Light Utilisation by Plants* Optical properties of cells, colonies and tissues. Consequences of variations in cell/pigment/tissue characteristics on light absorption. Case studies on 1) the 'package effect' in phytoplankton, 2) unusual strategies for enhancing light absorption by understory plants, and 3) the significance of leaf movements on light utilisation and carbon gain.

- GENE 4001 *Eukaryotic Genome* For details of unit see under Genetics.
- BOTN 4007 *Organelle Biogenesis* Translation of organelle proteins and the mechanism involved in their targeting, membrane translocations and final assembly into functional complexes.
- BOTN 4008 Plant Pathogen Interactions

Disease and disease resistance in plants; the ways in which pathogens gain entry and colonise host tissues; toxins, cell-wall-degrading enzymes, growth deregulators; the constitutive and induced defensive responses of plants; mechanical and biochemical resistance, including hypersensitive response, phytoalexins and PR proteins.

BOTN 4009 In vitro Techniques

Regulatory aspects of growth and metabolism of plant cells in culture. Growth and production kinetics of cultured plant cells; screening for chemical variants; cloning, clonal analysis and stability of isolates; possible origins of cellular heterogeneity; selection by amino acid analogue resistance.

BOTN 4010 Organogenesis

Molecular and cellular controls of cell shape, cell division planes, and organ formation. Generation of primordia at stem apex.

BOTN 4011 Critiques of Scientific Papers

Essential skills in the analysis and writing of scientific papers: titles, abstracts, presentation of materials and methods, data presentation and analysis, validity of conclusions. This tutorial course is designed to provide critical reading and writing skills.

BOTN 4012 Ecological Significance of Different Photosynthetic Pathways

Fundamental characteristics of carbon assimilation in terrestrial C3, C4, C3-C4 and CAM plants. Photosynthetic mechanisms in aquatic plants. Plant distribution and photosynthetic pathway. Examination of the effects of irradiance, temperature, CO_2 , water and nutrients on carbon assimilation. Predicting the response of plants and vegetation to global changes in climate.

BOTN 4013 Science and Society

Social creation of scientific knowledge: theories of Merton, Kuhn, Feyerabend. Role of science in society: reliability, use and abuse of scientific knowledge; should science be planned to meet social needs?; the public understanding of

science. Limits of science: does science have conceptual or ethical limits? Emergence of anti-science culture.

BOTN 4014 Developmental Plant Genetics

Developmental and environmental control of plant gene expression and pattern formation. Embryogenesis, root, shoot and leaf development, formation of reproductive structures. Formation of the photosynthetic apparatus.

BOTN 4015 Plants in Changing Environments

Underlying causes of differences in relative growth (RGR). Ecological and evolutionary significance of differences in RGR. Using RGR and related traits to explain and predict vegetation dynamics. Plant functional types and "scaling-up" in ecology.

Project

Each student will carry out a research project, to be presented as a thesis and seminar for part of the Degree examination assessment.

CELL AND MOLECULAR BIOLOGY

Programme Director: Professor Martin Steer

Prerequisite: First Science Biology - group (a) preferred.

Second Year Courses for General and Honours Degrees

Any Second Science combination that includes two biological subjects.

Third Year Topical Degree Course

Eight core courses: BOTN 3005, CELB 3001, GENE 3001, GENE 3002, GENE 3003, PHAR 3001, ZOOL 3002, ZOOL 3007.

Two optional units selected from: BIOC 3003, BIOC 3004, BIOC 3005, BIOC 3008, BOTN 3004, BOTN 3006, BOTN 3008, ZOOL 3004, ZOOL 3006, STAT 3208, STAT 3221, LANG 3001, LANG 3002, LANG 3003, LANG 3004.

CELB 3001 Cytoskeletons

Microtubules, actin, intermediate filaments, motor proteins, microtubule- and actin-associated proteins; assembly of cytoskeletons; function of cytoskeleton assemblages; synthesis of tubulin and G-actin; expression of cytoskeleton genes; evolution of cytoskeleton genes.

Fourth Year Honours Courses - CELB 4000

Each student must attend ten of the following courses and undertake a Research Project. The Project is to be presented as a seminar and submitted as a thesis. Selection of courses and project are subject to the approval of the Programme Director.

CELB 4001 Animal and Plant Cell Tissue Culture Introduction to techniques of animal and plant tissue culture, factors influencing proliferation and differentiation of cells in vitro. Applications of: a) animal cell culture techniques to topics such as intracellular protein targeting, antigen processing and presentation, signal transduction and gene expression in development; b) plant cell culture techniques to plant improvement programs; plant regeneration, variation, selection.

CELB 4002 *Immunobiology* Basic concepts in immunobiology. Antigen recognition by B and T cells. T cell development and T cell mediated immunity. Host defence mechanisms. Control and manipulation of the immune response.

CELB 4003 Neurobiology

Molecular mechanisms underlying memory and learning. Neurodegenerative states: Alzheimer's disease. Psychotic states: schizophrenia and depression. Molecular mechanisms involved in processing and storing information derived from the internal condition and the external environment.

GENE 4002 *Human Genetic Diseases* For details of unit see under Genetics.

CELB 4005 Complex Modes of Gene Regulation Investigation of aspects of regulation of gene expression: DNA topology and nucleosome structure; interaction of transcription factors with chromatin; identification of nuclear localisation signals; regulated nuclear localisation of transcription factors; nuclear gradients in *Drosophila* development; comparison of immune response pathways in *Drosophila* and mammals; effect of phosphorylation on nuclear transport.

- CELB 4006 *Cell Extension and Locomotion* Cytoskeleton-plasma membrane interactions, F-actin assembly and force generation, role of calcium and calmodulin, amoeboid locomotion, nerve growth cones, fibroblast locomotion.
- BOTN 4007 Organelle Biogenesis For details of this unit see under Botany.
- BOTN 4014 Developmental Plant Genetics For details of this unit see under Botany.
- BOTN 4011 Critical Analysis of Scientific Papers For details of this unit see under Botany.
- GENE 4001 *Eukaryotic Genome* For details of this unit see under Genetics.

ZOOL 4014 Transmissible Spongiform Encephalopathies For details of this unit see under Zoology.

CHEMISTRY

Second Year Courses for General and Honours Degrees

Prerequisite for all units: First Science Chemistry.

CHEM 2001 Synthesis and Reactivity of Organic Compounds - I

The preparation and reactions of molecules containing double bonds. Reactivity and stereochemistry of ionic and free-radical additions to alkenes and alkadienes; resonance and aromaticity; electrophilic and nucleophilic aromatic substitution. Chemistry of aldehydes and ketones including nucleophilic addition to carbonyl groups and addition following by elinination. Chemistry of carboxylic acids and their derived amides, esters, halides and anhydrides including nucleophilic acyl transfer reactions. Concept of resonance and delocalisation. Acidity of carboxylic acids. Base hydrolysis of an ester as an example of the investigation of a mechanism. Concept and control of consecutive reactions including the Grignard synthesis of tertiary alcohols. Chemistry of amines, amides and amino acids.

CHEM 2002 Co-ordination and Solid State Chemistry

Co-ordination chemistry: This section of the course will introduce a class of compounds referred to as co-ordination compounds, metal complexes or just complexes. These compounds contain a central metal atom surrounded by several ions or molecules. The surrounding ions or molecules are known as ligands and the types and classification of these will be discussed along with the geometry, isomerism and an introduction to bonding in co-ordination compounds.

Solid state chemistry: This introductory course will deal with single crystals, polycrystalline solids and glasses. After determining symmetry in molecules and crystals approximately 20 ionic, layer and molecular structures of the A, AB, AB_2 and AB_3 type are presented. The bonding in ionic solids, metals, semiconductors and insulators are discussed applying the Born-Haber cycle, Born-Landé and band theory. An introduction to X-ray methods and their application to silicate and cement chemistry as well as to heterogeneous catalysis will follow.

CHEM 2003 Introduction to Physical Chemistry

In this introductory series of lectures we will review the historical development of quantum mechanics. We will consider the implications of quantum mechanics for the description for simple molecules. We will also see that using only the introductory quantum mechanics presented in the first section of this course that it is possible to predict with a high degree of accuracy the spectroscopic properties of such molecules. This not only encourages us to want to know more quantum mechanics, but forcibly demonstrates the power of that already introduced.

Having considered the properties of individual atoms and molecules, we turn our attention to the properties of ensembles of large number of molecules, in particular, solutions. The experimental and theoretical basis of the driving forces for chemical transformations in solutions will be considered. Having done this, we will see how equilibrium in chemical reactions, conformational transitions in polymers, the binding of drugs to proteins and nucleic acids, the freezing, boiling and other properties of solutions can be predicted using one of the most powerful tools of physical chemistry.

CHEM 2004 Chemical Applications of Spectroscopy: Chemistry at work: Chemistry and Biology

Spectroscopy: Infrared spectroscopy: experimental methods and instrumentation of carbonyl groups. Functional group identification by IR in organic chemistry. Mass spectrometry: principles and instrumentation, molecular fragmentation, determination of molecular weight. Nuclear Magnetic Resonance spectroscopy: nuclear spin, influence of magnetic field, instrumentation. Proton chemical shifts, integration, spin-spin splitting. Ring current effects in aromatic compounds, hydroxyl groups and isotope exchange. Solving spectroscopic problems.

Chemistry at Work: Case studies focusing on several compounds of practical importance, e.g. some pharmaceuticals and agrochemicals. Overview of the discovery, chemistry, use, environmental impact, economics etc. of the compounds chosen. Rational design of compounds with desirable properties, especially biological activity.

Chemistry and Biology: The objective of this course is to provide a broader perspective on chemistry by considering the central role that chemistry plays in many important biological processes. Particular attention will be paid to the properties of large biological molecules, such as proteins.

Third Year Courses for General and Honours Students

Prerequisite for all units: Units CHEM 2001 to CHEM 2004.

Students taking Chemistry as one of two main subjects for a General Degree will ordinarily be required to take units CHEM 3001 to CHEM 3004. Additional units suitable for a General Degree are CHEM 3005, CHEM 3006, CHEM 3015 and CHEN 3025 (Process Engineering). Students wishing to pursue a single subject General Degree in Chemistry must take units CHEM 3001 to CHEM 3006, CHEM 3015 and CHEN 3025 (Process Engineering).

Students taking an Honours Degree in Chemistry will be required to take the eight units CHEM 3007 to CHEM 3014. Students taking a Joint Honours Degree in Chemistry will ordinarily be required to take five of the eight units CHEM 3007 to CHEM 3014, but other units may be selected subject to the approval of the Head of Department.

CHEM 3001 Organic and Polymer Chemistry

Functional group chemistry including reactions of carbonyl compounds, pericyclic reactions and stereochemistry. Preparation and reactions of heteroaromatic compounds. Preparation and properties of polymers.

CHEM 3002 Inorganic Chemistry

Fundamentals of main group chemistry. Structure and bonding in inorganic compounds.

CHEM 3003 Electroanalytical, Surface and Colloid Chemistry

Electrolyte dissociation and solvation; conductance measurements and applications; redox reactions at electrodes; electrode potentials and the Nernst equation; dynamic electrochemistry and analytical applications. Colloids, dispersions and self-assembled systems. Fundamental principles of stability in colloidal mixtures. Applications to biological cells and drug delivery systems.

CHEM 3004 Analytical Chemistry

Principles, practice and instrumentation for chemical analysis: sample preparation. Detection, and qualitative and quantitative determination of substances using chemical and spectroscopic techniques. Chromatographic methods, especially GC and HPLC. Statistics in analytical chemistry. Analysis and characterisation of polymers. Practical applications of industrial and biological significance will be discussed throughout.

CHEM 3005 Chemistry of Biomolecules

Structure, preparation and chemical reactivity of biomolecules, including carbohydrates, amino acids, peptides and bioinorganic compounds. Biopolymers and their chemical interactions with small molecules, including mechanism of drug-target interaction. Drug discovery and development.

CHEM 3006 Environmental Chemistry I

Analytical techniques for measurement of critical pollutant concentrations in the environment. Chemistry and pollution of the atmosphere including, types of pollutants, atmospheric dispersion and transfer of pollutants, photochemical smog, acid deposition, and effect of halocarbon and nitrogen oxide emissions on stratospheric ozone. Case studies of reductions in airborne pollutants.

CHEM 3007 Synthesis and Reactivity of Organic Compounds II

Introduction to the philosophy and practice of organic synthesis with emphasis on the disconnection approach and based mainly on the reactions of carbonyl compounds. Enol/enolate reactivity including aldol and Claisen condensations, the Michael, Wittig and Mannich reactions and the alkylation of enolates under thermodynamic or kinetic control. Structure and reactivity relationships of heterocyclic compounds; formation, substitution reactions and importance in biology. Application to the syntheses of some target molecules, including naturally occurring compounds, pharmaceuticals and fine chemicals.

CHEM 3008 Structure Determination by Spectroscopic Methods: Mechanisms of Organic Reactions

This course will consist of two parts:

(a) The use of mass spectrometry, ultraviolet/visible spectroscopy, infrared spectroscopy and, in particular, advanced methods of nuclear magnetic resonance spectroscopy for determining the structure of organic compounds.(b) An account of methods of studying organic reaction mechanisms and reactivity, illustrated by nucleophilic substitution and carbocation reactions.

CHEM 3009 Chemistry of the Main Group Elements

Structure and bonding of the main group elements and their compounds, including clusters, hypervalent compounds, fluxionality and inorganic materials and polymers.

CHEM 3010 Statistical Mechanics, Thermodynamics and Reaction Processes

The first part of the course gives an introduction to Statistical Mechanics and Thermodynamics. The following topics are included: The microcanonical, canonical and grand canonical equilibrium distributions. Concepts of the temperature, heat capacity, entropy, free energy and enthalpy. Derivation of the three laws of thermodynamics. The ideal gas law. Polytropic processes. Mixing of gases.

The second part of the course is devoted to study of Reaction Processes applying the principles of Statistical Mechanics. The following topics are discussed: Theories of bimolecular reactions: collision theory; transition state theory; comparison with experiment. Reaction dynamics: collisions of real molecules; potential energy surfaces; predictions of rate parameters based on potential energy surfaces. Unimolecular reaction rate theories: theory and comparisons with experimental data.

CHEM 3011Stereochemistry, Alicyclic Chemistry and Bioorganic Chemistry

Properties and analysis of stereoisomers. Stereoselectivity in organic reactions. Comparative discussion of the structure, preparation and reactivity of alicyclic compounds from cyclopropane to large rings. Chemistry of biomolecules, including carbohydrates, nucleotides and amino acids, and derived polymers.

CHEM 3012 Modern Inorganic Chemistry

Organometallic chemistry of the transition metals. Coordination chemistry. Acid-base chemistry. Non-aqueous solvents. Analytical chemistry.

CHEM 3013 Symmetry and Computer Simulations in Chemistry

The first part of this course will introduce and develop chemical applications of group theory. In doing so the following topics will be covered: Symmetry elements, operations and groups. Character table of a point group. Electronic structure of water and ammonia.

Subgroups and correlation tables. Molecular vibrations. Spectroscopic selections rules.

The second part of the course will introduce numerical methods in chemistry and emphasise the use of symmetry arguments to simplify numerical calculations. The topics here include: Integration of differential equations. Calculation of integrals. Methods of Molecular, Stochastic and Monte Carlo Dynamics. Numerical solution of the Schroedinger equation. Quantum variational Monte Carlo.

CHEM 3014 Thermodynamics and Electrochemistry

Solution thermodynamics; partial molar quantities; the chemical potential; the Gibbs-Duhem relationship; ideal and real solutions; activity and the activity coefficient; Gibbs phase rule; liquid vapour equilibrium; and phase diagrams. Electrolyte dissociation and solvation; conductance measurements including Kohlrausch's Laws; transport numbers and ionic mobility; redox reactions at electrode surface including Faraday's Laws; electrode potentials and the Nernst equation.

CHEM 3015 Environmental Chemistry II

Chemical pollution of fresh water and the oceans: types of pollutants and their chemical effects. Case studies illustrating the wide range of problems which arise in considering the effects of chemical releases on the environment. The examples will illustrate the various sources of pollution, their fate and analysis, and the factors which influence the type of control procedures which may be needed. The legal control of pollution: functions of pollution law, sources of law, and integrated pollution control.

CHEN 3025 Process Engineering

Introduction to industrial processes; description of typical processes, flow sheets, flow and batch systems, general concepts of unit operations, stoichiometry. Principles of analysis of distillation units and crystallisers and of chemical reactors.

Fourth Year Courses - CHEM 4000

Core Courses

Organic Chemistry

Structure and reactivity, pericyclic reactions, reaction co-ordinate diagrams; rearrangements; acid-base and enzymatic catalysis; asymmetric synthesis; biosynthesis; catalysis in chemistry and biology.

Inorganic Chemistry

Organometallic and related chemistry; structural methods in Inorganic Chemistry; inorganic solid-solution chemistry; carborane complexes, Mossbauer spectroscopy; principles of polymerization.

Physical Chemistry

Complex reactions kinetics; electrochemistry; spectroscopy; molecular characterisation by advanced instrument techniques; thermodynamics of solutions; statistical mechanics.

In addition, students will choose from a selection of optional courses, examples of which are given below.

Optional Courses

Bioelectrochemistry/Neurochemistry; Fourier-Transform spectroscopies; solution chemistry; atmospheric chemistry; nucleic acids and their drug complexes; organo-main-group chemistry; organometallics in synthesis; reactive intermediates; transition metal complexes in catalysis; solution-phase NMR techniques applied to structural determination; biomacromolecular chemistry; structures of solid materials and solid-surface catalyzed reactions; bioinorganic chemistry; chemical applications of group and isolobal theories; medicinal chemistry and agrochemistry. Statistical mechanics of phase transition and kinetics.

Practicals

Individual projects are carried out under the direction of members of staff.

COMPUTER SCIENCE

Second Year

Prerequisite: First Year Computer Science.

COMP 2001 Software Engineering

Dynamic data types, lists, queues, stacks, trees, graphs and operations on them; backtracking; space/time trade-offs; data abstraction; sorting: quicksort, heapsort, disk sorting; hashing.

COMP 2002 Computer Architecture: Systems

Microcomputer architecture; bus systems; i/o interface adaptors; parallel and serial devices; interrupts: types; handling of; polling and vectored interrupts; direct memory access; putting systems together; advanced memories: associative cache, virtual, multiprocessor architectures; programming.

COMP 2003 Functional Programming

Expression evaluation; notation; types; conditionals; lists and primitive functions; DEFUN; applicative functions; iteration; declarations; macros; EVAL; compilation; association lists; assignment; structures; I/O; CLOS; garbage collection; other functional languages.

COMP 2004 Foundations of Computing

Mathematical notation and terminology; finite automata and regular languages; definitions and properties, regular expressions; universal models and computability theory: Turing machines, primitive recursive functions; complexity of algorithms: efficiency of algorithms, complexity classes, complexity analysis in practice.

Third Year

Students are reminded that choice of third year options may constrain fourth year options available to them.

COMP 3001 Computer Architecture: Digital Systems

Logic Design; gates; multiplexors; decoders; arithmetic circuits; flip-flops, synchronous/asynchronous circuits, clocks, counters, registers; buses; integrated circuits; field programmable gate arrays; bit slices; memory elements; testing, hardware description language. *Prerequisite: COMP 2002*

COMP 3002 Operating Systems I

Introduction to OSs, OS Structure, Hardware features and OSs. Processes: Independent and Co-operative processes, Sychronisation Mechanisms, Deadlocks and Starvation. Memory Management: Binding and Relocation, Memory Organisations (fixed and variable partitions), Paging Technique, Segmentation Technique, Virtual Memory. File Management: File System structures, Files, Directories, File System Implementation. Introduction to Security and Protection: Basic Issues, Security Problem, Authentication, Encryption, Protection Problem, Trusted Systems. Case Studies: Unix, Win NT.

COMP 3003 Visual Computing: Graphics

Graphics hardware and languages; colour models; window to viewport transformation. clipping algorithms; two dimensional transformations;. threedimensional object representation; parallel and perspective projections; image enhancement; grey level histogram stretching, equalisation, specification; filtering; edge detection.

COMP 3004 Software Design & Development I

Information systems: Users, the technology, the value of information, systems development life cycle (overview): analysis and design methodologies; structured methods; selected system analysis and design techniques; designing structured programs; data environments; programming; software development tools, project management (overview); systems justification.

COMP 3005 Information Systems I

Kinds of information system; DBMS: concepts; 3-level architecture; entityrelationship model; network model and CODASYL; relational model; SQL; database design; normalisation. Information retrieval: classification (heuristic – automatic classification) – graph-theoretic – cluster-based retrieval – user models.

COMP 3006 Program Design & Verification

Review of predicate logic; use of predicates to specify programs. WP-calculus, backward derivation. Refinement calculus, calculation of programs. Efficiency considerations; strengthening invariants, choosing variants.

COMP 3007 Formal Syntax

Formal languages and their descriptions; grammars; Chomsky hierarchy; regular language; finite state automata; context free grammars; push-down automata; top-down/bottom-up parsing.

COMP 3008 Computer Networks

Network types, functions, topologies, transmission, switching, routing, management, reference models, architectures, protocols and standards; network user applications; flow and congestion control strategies; design and implementation considerations. *Prerequisite: COMP 2002*

COMP 3009 Artificial Intelligence

Problem Solving & Search: knowledge representation; search techniques; expert systems. Machine learning: inductive learning; learning from mistakes; case-based reasoning, connectionist computing: basic neurobiology; history of connectionism; connectionist models. Natural language processing. Applications of artificial intelligence; case-studies; recommender systems & the world wide web.

Prerequisite: COMP 2003

COMP 3010 Advanced Computer Architectures

Fundamentals of Computer Design: Measuring and Reporting Performance, Quantitative Principles of Computer Design, Concept of Memory Hierarchy. Instruction Set Principles. Pipelining: The Major Hurdle of Pipelining, Data and Control Hazards, Pipelining Implementation. Advanced Pipelining and Instruction-Set Parallelism: Instruction-Level Parallelism, Overcoming Data Hazards. CISC and RISC Architectures. Parallel Architectures: Fundamental Design Issues, Shared Memory Multiprocessors (UMA and NUMA), Distributed Parallel Architectures. Programming Paradigms. Systolic Architectures. Data-Flow Architectures.

COMP 3011 Object Oriented Programming

Fundamental object-oriented concepts: classes, objects, messages, encapsulation, inheritance, polymorphism, dynamic binding; elementary object-oriented design; practical programming in an object-oriented language, e.g. C++.

COMP 3012 Object-Oriented Design

Survey of existing software development methodologies; The Unified Modelling Language; Use cases; Modelling static and dynamic aspects of a system; Case studies; Product and process quality.

COMP 3013 Software Engineering Project

A group project in software engineering building a complete system based on the application of analysis, design and implementation techniques.

COMP 3014 Introduction to Multi-Media

Physical Foundations: The nature of sound and light: physical, perceptual, digital representations; Capture, conversion, storage, transport, and display of digital multimedia information; Digital typography; Basic Graphics, Audio, Video, Multimedia devices and architectures; Encoding mechanisms: MPEG, MPEG IV, QuickTime. Multi-Media Production Tools.

COMP 3015 Logic Programming

Introduction to logic programming; The logic programming computational model; Problem solving and practical programming in Prolog.

- COMP 3016 *Networks and Internet Systems* Network types, functions, topologies, transmission, switching, routing, management, reference models, architectures, protocols and standards; network user applications; flow and congestion control strategies; design and implementation considerations; use in internet systems.
- MATH 3208 *Mathematical Logic* is considered to be part of the Computer Science course for some Joint Honours Degrees. For details of course, see under Mathematics.

Fourth Year - COMP 4000

Students will be required to take four core units: COMP4001, COMP4007, COMP4008, and COMP4010. Four additional units may be chosen from those remaining. Students also undertake a substantial project assignment, under supervision, which is reported both orally and in written form.

COMP 4001 Theory of Computation

Efficiency of algorithms and complexity issues. Decision problems and languages. Classes of P and NP. NP completeness. Cook's theorem. Examples of NP-complete problem and proofs. Use of NP-completeness to analyse problems. Turing reducibility. Approximation algorithms..

COMP 4002 Information Systems II

Databases: recovery; concurrency; security; integrity; distributed databases; extended relational data model; object oriented data model. *Prerequisite: COMP 3005*

COMP 4003 Systems Design & Development II Systems development life cycle (issues/problems); Tools and techniques for analysis and design; implementation approaches; soft methodologies; CASE

tools: analysis, design, code generation; distributed system issues; evaluation; usability; quality assurance; security; project management tools and techniques. *Prerequisite: COMP 3004*

COMP 4004 Interactive Computer Graphics

The rendering pipeline; visible surface determination; local illumination and shading models; curve and curved surface generation; solid modeling; texture mapping; global illumination: ray tracing, radiosity and monte carlo methods; computer animation; scientific visualization. *Prerequisite: COMP 3003*

COMP 4005 Image Processing

Geometric operations; linear system theory; convolution and correlation; continuous Fourier transform; Fast Fourier Transform; frequency filtering; segmentation; image encoding; applications. *Prerequisite: COMP 3003*

COMP 4006 Computability

Recursive function theory; Post and Thue systems; particularly computability; equivalences; recursive functions, Turing machines etc.; mechanical theorem proving; Godel's incompleteness theorems.

COMP 4007 Formal Semantics

Formal semantics; needs and uses; semantics; recursive programs; fixed point theory; structural induction; computational induction; denotational semantics; algebraic semantics; axiomatic semantics.

COMP 4008 Topics in Object-Oriented Design

Object-oriented methods in the software development cycle; practical design techniques using e.g. Unified Modelling Language technique; alternative approaches to object-oriented design; frameworks and design patterns. *Prerequisite: COMP 3011*

COMP4009 Design Patterns

Introduction to Patterns. Use of patterns in the design process. Documentation of new patterns. Creational patterns. Structural patterns. Behavioural patterns. Introduction to Frameworks. Data-driven and architecture-driven approaches. Synergy between patterns and frameworks. Case studies. *Prerequisite: COMP 3011*

COMP 4010 Concurrent Programming

Nature of concurrent programming shared memory; message passing; interference; synchronisation; mutual exclusion; semaphores; deadlock; fairness; high level constructs for concurrency; communicating sequential processes; applications to operating systems; formal verification.

COMP 4011 Formal Specifications

Need for formal specifications; specification methods e.g. VDM, algebraic specifications; techniques for specifying complex systems; developing systems for specifications; case studies.

COMP 4012 Operating Systems II

Language mechanisms for concurrency. Security and Protection – formal models (access matrix, BLP, lattice, take grant models). Scheduling Algorithms. Distributed Operating Systems –design and implementation, Synchronisation in Distributed OS, Distributed Process Scheduling, Distributed Concurrency control (deadlock and recovery), Distributed File Systems, Distributed Shared Memory, Distributed Computer Security. Case Studies: CHORUS, MACH, AMOEBA. *Prerequisite: COMP 3002*

COMP 4013 Language Engineering

Fundamentals of natural language processing; formal models and corpusbased methods in speech and language; resources, standards and evaluation methodology; applications of human language technology. *Prerequisite: COMP 3009*

COMP 4014 Distributed Systems

Distributed systems processing and interconnection architectural/reference models and concepts; open and closed systems; distributed operating system kernels, decomposition and consequences of distribution; security and management of distributed systems; transparency, remote operations, coordination replication, shared transactions, concurrency control, recovery and fault tolerance. *Prerequisite: COMP 3008*

COMP 4015 Exploring Computer Science

Special topics related to current research and state of art applications not covered in other units.

COMP 4016 The Intelligent Internet

Applications of Artificial Intelligence techniques to the Internet: information integration, information extraction, information retrieval, clustering, recommender systems, and semi-structured information. *Prerequisite: COMP 3009*

COMP 4017 Foundations of Artificial Intelligence

The importance of representation, First Order Logic, Predicate Calculus, Normalised FOPL forms, Skolemisation, Conversion to Clausal Form, Resolution, Logic Programming, Prolog, Extra Logical features of Prolog, Semantic Networks, Frames, The Frame Problem. *Prerequisite: COMP 3009*

COMP 4018 Connectionist Computing

Basic neurobiology; cortical and sub-cortical structure and function. History of connectionism: the McCulloch and Pitts neuron, Hebbian learning, the

Perceptron. Modern connectionist learning: simple associators, the Boltzmann machine, Hopfield networks, Kohonen networks, error backpropagation. Connectionist natural language processing. Connectionist visual processing. *Prerequisite: COMP 3009*

COMP 4019 Multi-Agent Systems (MAS)

Definition of Distributed Artificial Intelligence (DAI). Motivations for MAS, Strong versus weak notions of agency. Intentional agent systems. Agent communication. Speech act theory. Collaboration, planning, belief desire intention (BDI) architectures. Agent oriented design, agent oriented programming and languages (Agent0, Agentalk), Multi-agent systems prototyping environment, industrial and commercial applications. *Prerequisite: COMP 3009*

COMP4020 Speech Processing

Speech production: the vocal tract, basic articulatory phonetics; Acoustic phonetics; Waveform segmentation; Sampling and digital encoding; FFT and spectral representations; Spectrogram reading; Source-filter model of the vocal tract; Speech coding - LPC, Cepstra; Voicing and pitch extraction; Principles of synthesis.

COMP4021: Parallel Algorithms: Design & Analysis

Performance and Scalability of Parallel Systems, Metrics, Sources of Parallel Overhead; Arrays and Trees - Elementary Sorting and Counting, Matrix Algorithms, Graph Algorithms; Meshes and Trees - 2-Dimensional Mesh of Trees, Elementary O(log N)-Step Algorithms, Higher-Dimensional Meshes of Trees; Hyper-cubes and Related Networks - Hypercube, Butterfly Cube-Connected-Cycles and Benes Network, Shuffle-Exchange, Packet Routing Algorithms, Sorting, FFT, Other Hypercube Networks; Parallel Systolic Algorithms - Mapping 1-D and 2-D Systolic Arrays onto Parallel Computers. *Prerequisite: COMP 3001*

COMP4022: Randomised Algorithms & Stochastic Simulation

Basic concepts in the design and analysis of randomised algorithms; Randomness and non-uniformity, Game-Theoretic Techniques, Markov Chains and Random Walks, Algebraic Techniques; Linear and Non-linear Programming; NP-complete applications; Graph Algorithms; Metaheuristic techniques: simulated annealing, genetic algorithms, tabu search.

COMP4023: Hardware-Software Codesign

Models and Architectures; Hardware languages; Target architectures; Compilation techniques and tools for embedded systems; Design specification; Prototyping and Emulation. *Prerequisite: COMP 3001*

COMP4024: Parallel Environments & Applications

Parallel Programming: Parallelism and Computing, Parallel Programming Paradigms. Designing Parallel Applications: Methodical Design, Partitioning, Communication, Agglomeration and Mapping. Parallel Programming Languages: Compositional C++, C*, HPF, MPI, C-LINDA. Performance Tools: Performance Analysis, Data Collection, Data Transformation and Visualisation, Tools (Paragraph, Upshot, ParAide, and IBM's Parallel Environment). *Prerequisite: COMP 3001*

ENVIRONMENTAL BIOLOGY

Course Directors:

Botany:	Professor Gerard J. Doyle
Industrial Microbiology:	Dr Evelyn M. Doyle
Zoology:	Dr Bret Danilowicz

Prerequisite: First Science Biology

Regulations covering Topical Degrees are listed on page 31.

Second Year Programme for General and Honours Degrees

Students must follow course combinations that include any two of the subjects Botany, Industrial Microbiology or Zoology. Students take each of the course units listed for these subjects for Second Year.

Third Year Programme for General and Honours Degrees

The Third Year Environmental Biology programme comprises ten course units - *eight core* units (in Botany, Industrial Microbiology and Zoology) - together with two optional units from the Faculty of Science programme. Unit selection depends on the student's second year subject combination and must be agreed by the Programme Directors.

Environmental Biology Core Units in Botany, Industrial Microbiology and Zoology Core course titles are listed below. Details of the core course units are presented under the subject listings for Botany (BOTN 3001, etc.), Industrial Microbiology (INDM 3001, etc.) and Zoology (ZOOL 3001, etc.).

BOTN 3001	Diversity and Ecology of Fungi
BOTN 3003	Plant/Soil Interactions in Wetlands
BOTN 3004	Plant Growth and Nutrient Assimilation
BOTN 3007	Vegetation Ecology and Biogeography
INDM 3001	Bacteriology and Mycology
INDM 3002	Microbial Physiology and Biochemistry
INDM 3004	Environmental Microbiology
INDM 3007	Gene Recombination, Regulation and Expression
ZOOL 3001	Avian and Mammal Biology

ZOOL 3003	Invertebrate Zoology II
ZOOL 3004	Animal Behaviour
ZOOL 3005	Animal Ecology II

Fourth Year Courses for Honours Degree - ENVB 4000

Nine lecture courses are selected from among those listed below. All students must attend ENVB 4001 *Environmental Regulation: Policy and Practice* and BOTN 4011 - *Critical Analysis of Scientific Papers*. A minimum of *three* units (core units) must also be selected from each of the two main subject areas contributing to the degree programme, (i.e. Botany, Industrial Microbiology, Zoology). Course selection will depend on the student's academic background and must be agreed with the Programme Directors and the relevant Head of Department. Courses on offer include:

Compulsory Courses for Final Year Environmental Biology

ENVB 4001 Environmental Regulation: Policy and Practice Environmental regulation in Ireland and the EU: policy, administrative and

legislative framework with regard to species/habitat conservation, pollution, and resource management in terrestrial, freshwater and marine environments.

BOTN 4011 Critical Analysis of Scientific Papers

Botany Course	Units for Final Year Environmental Biology
BOTN 4001	Peatland Ecology and Conservation
B0TN 4002	Ecotoxicology
BOTN 4003	Demography and Evolution in Plant Populations
BOTN 4004	Role of Mycorrhizas in Forest, Heathlands and Agricultural Ecosystems
BOTN 4008	Plant-Pathogen Interactions
BOTN 4012	Ecological Significance of Different Photosynthetic Pathways
BOTN 4015	Plant Growth in Contrasting Environments
Industrial Micro	biology Core Course Units for Final Year Environmental Biology
INDM 4013	Current Topics in Fungi
INDM 4015	Environmental Microbiology I
INDM 4016	Environmental Microbiology II
Industrial Micro	biology Options Course Units for Final Year Environmental Biology
INDM 4012	Current Topics in Bacteria
INDM 4014	Microbial Genetics
INDM 4017	Food Microbiology
Zoology Core C	ourse Units for Final Year Environmental Biology
ZOOL 4003	Contemporary Taxonomy
ZOOL 4005	Ecology of Tropical Rainforests
ZOOL 4010	Environmental Impact Assessment
Zoology Option	s Course Units for Final Year Environmental Biology
ZOOL 4001	Biodiversity
ZOOL 4007	Wildlife Management

ZOOL 4013 Fisheries Science

Honours Project

An honours project in an environmental topic in Botany, Industrial Microbiology or Zoology will be a significant component of the final year course. This will be presented in thesis form as part of the final degree examination assessment.

Written Assignments

Two written, library-based assignments will be undertaken, and will form part of the final year assessment.

ENVIRONMENTAL GEOCHEMISTRY

Programme Director: Dr J. Stephen Daly, Department of Geology

This programme is primarily designed as a two-year programme following completion of Second Science, leading to the award of an honours Topical degree. (See regulations for Topical Degree p. 31)

Second Year Courses for General and Honours Degrees

Students take Geology, Chemistry and one other subject in Second Science.

Third Year Courses for General and Honours Degrees

Students take eight core units which are CHEM 3001, CHEM 3002, CHEM 3006, GEOL 3002, GEOL 3003, GEOL 3004, GEOL 3005, GEOL 3013 and two optional courses to be decided in consultation with the Course Director.

Fourth Year Course for the Honours Degree

Students take eight core units which are CHEM 3003, CHEM 3004, CHEM 4001, CHEM 4002, GEOL 3006, GEOL 3008, GEOL 4011, GEOL 4012.

In addition, all Fourth Year students are required to complete a field, laboratory or combined field laboratory project(s) during the course of the year. In the case of field projects, the data are collected in the Summer before the start of the Fourth Year. This will be presented in thesis form as part of the final degree examination assessment.

The Third and Fourth Year courses involve geological field classes.

Courses in Environmental Geochemistry

A wide range of economic activities including the provision of clean water supplies, mining, the siting and operation of landfill sites, disposal of hazardous and radioactive waste, now draw on the expertise of environmental science graduates. A key requirement, hitherto largely neglected, is to produce graduates who understand the physical and chemical interactions of contaminants and pollutants with the geosphere (e.g. groundwater, aquifers, soils, glacial and fluvioglacial deposits, different bedrock lithologies). Hence the need for graduates with a strong geoscience as well as a chemistry background.

GEOL 3013 Applied Geochemistry

Geochemistry of groundwaters, rivers, lakes, estuaries, coasts and the marine environment. Kinetics of mineral-water interactions. Role of particulates, colloids, sorption, desorption, ligand interactions in the hydrosphere. Eh-pH diagrams. Role of organics and organometallic compounds. Bioavailability. Mechanisms and timescales of pollutant recycling and dispersal.

GEOL 4011 Isotope Geochemistry I

Radiogenic isotopes as geochronometers and tracers. Quaternary geology and short-lived nuclides. Actinide geochemistry. ²³⁰Th/²³⁴U, ²³⁴U/²³⁸U, ²³¹Pa/²³⁵U and ²¹⁰Pb dating methods. U-series mobilisation and surface hydrology. Groundwater dating and tracing. Applications to radioactive waste disposal studies. Pb isotopes as environmental tracers. Cosmogenic isotopes. Radiocarbon dating.

GEOL 4012 Isotope Geochemistry II

The carbon cycle. Organic compounds in mineral inclusions, humic acids, lipids, kerogen. The organic geochemistry of peat, coal, crude petroleum and recent sediments. Extraction techniques and analytical methods. Compound specific stable isotope analysis. Stable isotope fractionation processes and temperature effects.

CHEM 4001 Thermodynamics

Solution thermodynamics; partial molar quantities; the chemical potential; the Gibbs-Duhem relationship; ideal and real solutions; phase diagrams; electrolyte dissociation and solvation.

CHEM 4002 Surface Reactions

Structural chemistry of calcium, magnesium, iron and silicon compounds, oxidation and hydrolysis reactions. Effect of surface properties, surface depositions and surface characterisation. Temperature effects.

(CHEM 4001 and 4002 form part of the Fourth Year single honours course for Chemistry).

EXPERIMENTAL PHYSICS

Prerequisites for all units: First Science Experimental Physics and Mathematics

Second Year Courses for General and Honours Degrees

EXPH 2001 Optics & Computational Physics

Wave motion. Superposition. Electromagnetic theory of light. Light propagation (reflection, refraction, Fermat's principle). Polarisation. Interference (Young's slits, Michelson & Fabry-Perot interferometers). Diffraction (Fresnel & Fraunhofer). Simulation of deterministic processes.

Generation of pseudo-random numbers. Simulation of random processes. Random walks. Computational methods in optics.

EXPH 2002 Electromagnetism

This course builds on electrostatics and evolves to a discussion of the conservative nature of the electric field and to the formulation and application to electrostatics of both the Divergence theorem and Stokes' theorem. Rules governing the flow of electrons in real circuits are developed and symmetry principles applied to complex circuits. Special circuits such as LR, CR and LCR are analysed in detail. The effect of electric fields on materials is presented. Practical considerations such as complex impedance, resonance, power transfer and impedance matching are all described in the context of real circuits some of which will be computationally modelled.

EXPH 2003 Atomic and Quantum Physics

Introduction. Distribution functions. Blackbody radiation. Quantisation. The Bohr Atom. Wave particle duality. The wave packet. Heisenberg's uncertainty principle. The Schrödinger Wave Equation and simple systems. Applications of Quantum Mechanics to different scale systems i.e. solids, atoms, nuclei. The Compton effect, Rutherford scattering and Brownian motion are modelled as exercises.

EXPH 2004 Solid State Physics and Devices Introduction to the physics of materials in the solid state, with particular

reference to electron behaviour. Electronic band structure of conductors, semiconductors and insulators. Intrinsic and extrinsic conductivity and doping in semiconductors. p-n junction. Practical semiconductor devices, including FET transistors and the solid state laser. Computer modelling of devices. Superconducting properties of materials at low temperatures.

Third Year Courses for General and Honours Degrees

Students taking a *General Degree* in Experimental Physics will be required to take modules EXPH 3001 to EXPH 3004 inclusive and, if they wish either EXPH 3005 or EXPH 3010.

Students taking an *Honours Degree* in Experimental Physics will be required to take modules EXPH 3006 to EXPH 3013 inclusive.

Students wishing to take third year honours units in Computational Physics should note that units EXPH 3014 and EXPH 3015 will be offered on a limited basis to interested students as alternatives to EXPH 3010 and EXPH 3012. Units MAPH 3071 and MAPH 3081 will be correquisites for students wishing to pursue the Computational Physics option.

EXPH 3001 Electromagnetism and Optics

Maxwell's equations. Electromagnetic waves. The Poynting vector. Fresnel's equations. Non-reflecting and high reflecting films. Absorption and dispersion. Polarization. Magneto-optic, electro-optic and acousto-optic effects. Vector and scalar potentials. Transmission lines. Waveguides. Interference. Michelson interferometer. Fourier transform spectroscopy. Fabry-Perot interferometer. Twyman and Green interferometer. Lasers. Non-linear optics.

EXPH 3002 Atomic and Nuclear Physics

Atomic spectra. One-electron atom. Perturbation theory. Zeeman effect. Electron spin. Spin-orbit interaction. Many electron atoms. Independent particle model. Spectra of simple atoms. Landé g factor. Hyperfine splitting. Nuclear size. Mass spectrometry. Nuclear reactions. Nuclear binding energy. Nuclear models. Semi-emperical mass formula. Nuclear decay properties. Mössbauer effect. Fission and fusion.

EXPH 3003 Molecular & Solid State Physics

Interatomic forces. Ionic, covalent and Van der Waals binding. The hydrogen molecule. Rotational and vibrational molecular spectra. Raman effect. Binding in solids. Crystal structure. Bragg diffraction. Metals and insulators. Band theory of metals. Specific heat of solids. Sommerfeld's free-electron model. Thermionic emission. Hall effect. Semiconductors.

EXPH 3004 Thermodynamics and Statistical Physics

Temperature. First law of thermodynamics. Work and energy. Second law. Carnot cycle. International temperature scale. Entropy. Maxwell relationships. TdS equations. Applications of thermodynamics. Phase changes. Thermal radiation. Introduction to statistical physics. Maxwell Boltzmann, Bose-Einstein and Fermi-Dirac distributions. Introduction to superconductivity.

EXPH 3005 Instrument Science

Introduction to measurement systems. Instrument definition, static and dynamic characteristics. Zero, first and second order instrument systems. Deterministic and random noise. Noise reduction and signal processing techniques. Digital to analogue and analogue to digital conversion. Sensor conversion processes. Mechanical, electrical, electronic, optical and opto-electronic transducers. Thermoelectric and piezo-electric systems.

EXPH 3006 Thermodynamics and Statistical Physics

Temperature. First law of thermodynamics. Work and energy. Second law. Carnot cycle. International temperature scale. Entropy. Maxwell relationships. Applications of thermodynamics. Phase changes. Thermal radiation. Introduction to statistical physics. Maxwell-Boltzmann statistics and applications. Fermi-Dirac statistics. Bose-Einstein statistics. Planck's Law. B-E condensation. Properties of liquid Helium.

EXPH 3007 Solid State Physics

Binding forces in crystals. Lattice dynamics - Vibrational modes. Acoustic and optical branches, phonons. Lattice specific heats - Einstein and Debye models. Classical free electron gas, quantum effects, Fermi energy, pressure of an electron gas, specific heat of a degenerative electron gas. Periodic lattices, Bloch functions, Kronig-Penney model - band structures. Paramagnetism.

EXPH 3008 Electromagnetism

Vector and scalar fields. Laplace equation. Lorentz gauge. Magnetic vector potential. Aharanov-Bohm effect. Maxwell's equations. Electromagnetic waves. Energy transport. Irradiance. Radiation pressure. Lorentz force. Relativistic transformation of E-field. Relativistic field due to moving point charge. AC circuit elements. "Idealised inductance". Transmission lines. Ladder networks. Low and high pass filters. Very high frequency effects. Resonant cavity. Waveguides. Electromagnetic waves with boundary conditions. Momentum density of electromagnetic fields.

EXPH 3009 Optics

History of optics. Diffraction. Introduction to Fourier optics. Diffraction gratings. Fabry-Perot interferometer. Fourier transform spectroscopy. Michelson interferometer. Coherence. Optical systems, matrix optics, point spread function, OTF, MTF, deconvolution. Optical processing. Holography. Optical radiation detectors. *Prerequisite: EXPH 2001.*

EXPH 3010 Electronics

An introduction to analog electronics with emphasis on operational amplifiers and their applications to analog signal processing. Topics covered include negative feedback, analog computation, linear and non-linear circuits. An introduction to digital electronics is also presented with emphasis on the TTL logic family, in particular, gates, monostables, counters and applications. The influence of noise in electronic circuits is also discussed.

EXPH 3011 Classical Mechanics and Relativity

Variational principles and Lagrange's equations. Hamilton's equations. Special relativity - classical background. Michelson-Morley and related experiments. Einstein's postulates. Lorentz transformation equations - experimental confirmation. Transformation of velocity. Geometrical representation. The clock paradox. Four vectors and relativistic invariance. Energy-momentum transformation equations. Relativistic momentum energy relationship and applications. The transformation of force. *Prerequisite: EXPH 2003.*

EXPH 3012 Nuclear Physics

Interaction of nuclear radiation with matter. Alpha decay. Beta decay. Parity and its non conservation in β decay. The neutrino. Gamma decay. Accelerators. Nuclear reactions. The neutron. The compound nucleus. Liquid drop model of the nucleus. Nuclear fission. Nuclear reactors.

EXPH 3013 Quantum Mechanics

Postulates of Quantum Mechanics. Operators, observables and eigenfunctions. Co-ordinate and momentum representations. Hermitian operators. Matrix methods. Uncertainty Principle. Ehrenfest's theorem. Harmonic oscillator. Ladder operators. Angular momentum. Schrödinger theory of the hydrogen atom. Degeneracy. Fine structure. Normal Zeeman effect. Pauli theory of electron spin. Stern-Gerlach experiment. Spin-orbit interaction. Total angular momentum. Clebsch-Gordan coefficients.

Courses for Computational Physics alternatives

EXPH 3014 Linear Methods and Transforms in Physics

Computational physics methods and techniques are developed for application to data analysis and reduction. Emphasis will be on developing algorithms and computer programs which may be applied to real systems. Topics will include: Linear equations, Matrices, Bezier curves, Lagrange interpolation, Spline fitting, Eigenvalues, Singular value decomposition. Fourier transform spectral methods, filtering and convolution, power spectra, applications to image processing and time series analysis.

EXPH 3015 Chaotic Dynamics and Fractals

Non-linear dynamics forms the basis of this course which is given expression in the study of chaotic systems and fractals. Emphasis will be on computational methods and exercises aimed at gaining insight into how non-linear systems shape our world. Topics to be covered will include: Simple and driven pendula, Chaotic motion and bifurcation, Period doubling, Stability, Lyapunov exponents, Lorenz simplified weather model, numerical integration of particle moving in two dimensions e.g. Henon-Heiles potential. Theory of fractals, visualization of fractals, fractal Brownian motion, fractal dimension.

Fourth Year Courses for Honours Degree - EXPH 4000

Students taking an Honours Degree in Experimental Physics will be required to take units EXPH 4001 to EXPH 4006 inclusive plus any two of units EXPH 4007 to EXPH 4014. It should be noted that not all of the optional units will necessarily be offered each year.

Students wishing to take fourth year honours units in Computational Physics should note that units EXPH 4015 and EXPH 4016 will be offered to students, who have taken the Computational Physics alternative at third year honours level. They will be required to take units EXPH 4001, EXPH 4003, EXPH 4004, EXPH 4006, EXPH 4015 and EXPH 4016 inclusive, plus any two of the Fourth Year units EXPH 4007 to EXPH 4014 or one of these units combined with one of the Third Year units, EXPH 3010 or EXPH 3012. It should be noted that not all of the optional units will necessarily be offered each year.

EXPH 4001 Quantum Mechanics

Linear vector spaces. Discrete and continuous representations. Dirac general transformation theory. Schrödinger and Heisenberg representations as special cases. Time development of quantum systems. Definition of Hamiltonian in quantum theory. Two state systems. The photon. Ammonia molecule. Hydrogen molecular ion and neutral K-meson. Symmetry in quantum theory. Conservation laws. Quantum theory of charged particles in electromagnetic field. Introduction to relativistic quantum mechanics. The Klein-Gordon equation. Dirac four component wave function. Dirac equation and its solution for free electron. "Quantum reality". Einstein Podolski Rosen paradox. Bell inequality. Aspect experiments.

EXPH 4002 Quantum and Nuclear Physics

Quantum theory for Bosons and Fermions. Theory of the deuteron. Partial wave analysis. Scattering length and effective range concepts. Proton-neutron scattering. Born approximation. Single-particle shell model of the nucleus. Nuclear fusion including solar fusion and the solar neutrino flux. Neutron physics including neutron detectors.

EXPH 4003 Applied Electromagnetism and Plasma Physics

Electromagnetism

Fields due to an oscillation dipole. Rate of radiation from an oscillating charge. Scattering including Thompson scattering and Rayleigh scattering. The invariance of Maxwell's equations. The current-potential four vector. *Plasma Physics*

Fundamental atomic processes. Plasma electron oscillations. Highly conducting plasmas.

EXPH 4004 Atomic and Molecular Physics

Hydrogen atom in a magnetic field: Anomalous Zeeman effect, Paschen-Back effect and Chaos. Approximation methods: Non-degenerate and degenerate perturbation theory, variation principle. Stark effect. Helium atom: spin and exchange in two-electron systems, energy level structure and spectrum. Manyelectron atoms. Central field theory. Coupling schemes. Autoionisation. Time-dependent perturbation theory. Transition probabilities.

The covalent bond. Properties of simple diatomic molecules.

EXPH 4005 High Energy Particle Physics

Fundamental particles and their interactions. Quantum numbers. Conservation laws. Resonant states. Gell-Mann Pais theory of neutral K meson. CP violation. Pais-Piccioni effect. The fundamental constituents of matter - leptons, quarks, gauge mesons. The fundamental interactions. Some ideas introduced by quantum field theory - antiparticles; exchange mechanism for interactions, Feynman diagrams. Quark structure of Hadrons, other evidence for quarks. Colour and the strong interaction. Weak interactions. Survey of experimental techniques. Charm, Beauty and Top quark searches. Heavy leptons. pp physics and the weak field mediators. Neutrinos.

EXPH 4006 Solid State Physics and Lasers

Solid State Physics: Reciprocal Space. Crystalline structure. Brillouin zones. Landau levels. Measurement of the Fermi surface. Location of the Fermi level in intrinsic and extrinsic semiconductors. Low dimensional systems. Quantum Hall effect.

Lasers: Einstein's theory of radiation. Resonant cavities and modes. Threshold value of population inversion. Optical pumping. Types of laser. Laser output. Semiconductor lasers.

EXPH 4007 Applied Optics

Polarisation and birefringence. Acousto-optic, electro-optic and magneto-optic effects. Modulators, deflectors and displays. Liquid crystals. Non-linear optics. Harmonic generation. Parametric oscillation. Phase conjugation. Memory devices. Detectors: PMT, photoconductive and junction, CCD. Planar

dielectric waveguides. Optical fibres: Step and graded-index, attenuation and dispersion. Optical communications. Fibre optic sensors.

EXPH 4008 Environmental Physics

Aerosol properties: size distributions, shape factors, deposition characteristics and charging mechanisms. Radiation doses, risk factors and limits. The natural radiation environment, cosmic radiation and radon doses. Detection techniques. Lung dosimetry of alpha emitters. Radioecology. Radioecological modelling. Speciation effects. Radioanalytical techniques, including principles of environmental sampling, sample variability, radiochemical analysis, radiometry and mass spectrometry. Radioisotope dating.

EXPH 4009 Perspectives in Modern Astrophysics

A number of selective topics are presented in this two part course.

Part I: Emphasises the Sun, stellar evolution, gravitational potential energy, temperature, pressure, luminosity and fusion reactions, galaxy formation, dark matter and large scale structure of the galaxy. Neutrino flux.

Part II: Concentration on the influence of gravitational collapse to include supernovae, pulsars, primordial black holes, supermassive black holes and active galactic nuclei, with an emphasis on high energy processes and radiation mechanisms.

EXPH 4010 Atomic Structure and Spectra

Single particle and many body models. Hartree and Hartree-Fock methods. Slater F and G integrals. Energy level structure in complex systems. Configuration interaction. Series perturbations. Selection rules and quantum mechanical treatment of transition probabilities. Autoionization, inner shell photoionization and non-radiative decay. Unresolved arrays and statistical methods. Modern developments in atomic physics.

EXPH 4011 Physics of Ionised Gases

States of matter. Collective model - some general characteristics - plasma oscillations. Debye length. Classical Collision Theory. Processes leading to creation of an ionised gas. Derivation of Boltzmann equation. Derivation of macroscopic hydromagnetic equations. Conservation laws. Motion of particles in electric and magnetic fields. Plasma diagnostics. Waves in plasmas.

EXPH 4012 Electronics

Advanced topics in electronics are treated including analog to digital and digital to analog conversion, digital memory systems, digital filters, interfacing techniques, data logging, transconductance amplifiers and analog multipliers. Specialist applications in both analog and digital domains will be presented.

EXPH 4013 Condensed Matter Physics

Type-I and type-II superconductors. Meissner effect. Thermodynamics of normal to superconconducting phase change. Electrodynamics and Maxwell's equations. London penetration depth. Coherence length. Phenomenological theories. Virtual phonon scattering and the Cooper ground state. BCS theory. Energy gap. Josephson effects. SQUIDs and SLUGs. High-temperature

superconductors. Superfluidity in liquid helium. First and second sound. Rotons. Vortex states. Laser cooling and trapping of atoms and ions. Bose-Einstein condensation of alkali vapours. Co-operative magnetic phenomena.

EXPH 4014 Medical Physics

Photon interactions in matter. X-ray spectra and filtration. Charged particle interactions. Production of medical radiation beams. Charged particle equilibrium. Kerma and dose. Bragg and Gray cavity theory. Absolute dosimetry. Detection of ionising radiation. Radiation Protection. Medical uses of ionising radiation, external teletherapy, bracytherapy. Nuclear Medicine and diagnostic imaging.

Courses for Computational Physics alternatives

EXPH 4015 Data reduction, Modelling and Error Analysis

In this course the fundamental elements of data reduction and error analysis are presented. Topics covered include: Computational methods for data analysis, Probability distributions, Error analysis, Least squares fitting. Maximum likelihood methods. Testing and goodness of fit. Role of Monte-Carlo simulations. Minimization and maximization of functions. Simplex algorithms. The method of simulated annealing. Application of these techniques to physical systems.

EXPH 4016 Interdisciplinary Computational Physics

Genetic algorithms: Random mutations, selection based on fitness. Function optimization, artificial life systems. Neural networks: Perceptrons, layers, computational networks, optimization, applications to pattern recognition. Cellular automata. One and two dimensional examples. Simulating the Ising model with cellular automata. Self organized criticality: Relaxation in dissipative natural systems. Modelling such systems and application to earthquakes, propagation of forest fires and the collapsing sandpiles.

GENETICS

Third Year Courses for General and Honours Degrees

GENE 3001 Genetics

Mendelian Genetics: comprehensive treatment of basic concepts; genetic crosses; continuous variation; partial and co-dominances; gene interactions; linkage and chromosome mapping.

Molecular Genetics: DNA structure; transcription; chromatin structure. Recombinant DNA technology: restriction enzymes; DNA cloning; sequence analysis; PCR.

Applied Molecular Genetics: Map based cloning. Tools for genetic analysis; mini-satellites; RFLPs. Genetic analysis of human diseases: cystic fibrosis.

GENE 3002 Genome Structure

Gene 3002 outlines the structure of the Eukaryotic genome with an emphasis on the dynamic nature of the evolving genome. The unit covers topics in gene splicing, C-value and multigene family paradoxes, repetitive elements, and examples of programmed genetics variation such as the mechanism underpinning antibody diversity.

GENE 3003 Gene Expression

Regulation of gene expression: transcription, termination, anti-termination, attenuation, translational feedback control, antisense RNA. Bacteriophage lamda as a model system. Regulation of gene expression in eukaryotes: basal transcription complex; enhancers, signal chain transduction in plants. Genomic imprinting. Mechanisms of recombination: gene conversion, transposition, retroposons and retroviruses. Homologous recombination, its use in transgenesis.

BIOC 3004 *Gene Manipulation, Regulation and Evolution* For details of unit see under Biochemistry.

Fourth Year Honours Courses in Molecular Genetics

GENE 4001 The Eukaryotic Genome

cDNA and genomic libraries, subtractive cDNA techniques. Identification of novel genes through transposon tagging. The control of gene expression in animals and plants with reference to the use of transgenics. DNase sensitivity and heat-shock proteins, gene activation by steroids and homeotic genes and the homeobox.

GENE 4002 Human Genetic Diseases

This course offers students an overview of genetic disorders and the application of molecular techniques to identify disease causing genes. Topics covered invlude: the inheritance pattern, molecular basis and clinical consequences of inherited genetic defects: the relevance of chromosomal abnormalities and gene-environment interaction to human disease and the techniques used in identifying disease causing genes.

GENE 4003 Developmental Biology (formerly Seminar Series) Using a format of literature review and presentation by the participating students this course offers an introduction to selected aspects of the molecular

students this course offers an introduction to selected aspects of the molecular biology of development of the Drosophila embryo and Drosophila eye. Topics covered include: maternal contribution to embryo development; the patterning of the embryo; and cell signalling in eye development.

GEOLOGY

Second Year Courses for General and Honours Degrees

Prerequisite for all units: First Science Geology

GEOL 2001 Mineralogy and Petrography

Crystal optics and the use of the polarising microscope; examination and identification of minerals from their optical properties and in hand specimen. Atomic structure, properties and occurrence of minerals - silicates, oxides, sulphides, sulphates, carbonates and others.

GEOL 2002 Structure and Sedimentology

Brittle, ductile and viscoelastic behaviour. Conditions for brittle failure, faults and fault geometrics. Folds and fold classification. Simple shear belts and their features. Kink bands, boudinage. General consideration of pure shear. Sediment generation and deposition. Clastic sedimentary rocks. Fluid dynamics, sediment transport and sedimentary structures. Gravity driven sediment transport and turbidity currents. Diagenesis, depositional environments of mudrocks and carbonates. Chemical sediments.

GEOL 2003 Igneous and Metamorphic Petrology

The occurrence, composition and origin of igneous and metamorphic rocks. Geochemical characteristics of magmas related to tectonic processes. Granite structures and intrusion mechanisms. Experimental studies. Metamorphic grade, zones and facies. Metapelite, metabasite and calc-silicate assemblages. Description and interpretation of textures; Pre-, syn- and post-tectonic (static) metamorphic mineral growth. Compositional dependence of metamorphic assemblages. Phase diagrams. The Phase Rule. Regional and contact metamorphism.

GEOL 2004 Field Studies and Tectonics

Half of this course consists of formal lectures and practical classes and half consists of field investigations. Interplay between tectonics and sedimentation. Strain theory and measurement. Depositional environments and reconstruction of ancient sedimentary basins. Practical work will consist of map problems and exercises in sedimentological interpretation. Four one-day field classes and one seven-day field class held in the Spring vacation which is devoted to mapping techniques.

Third Year Courses for General and Honours Degrees

Honours students in Geology take GEOL 3001 to 3009 inclusive. Students following a two subject BSc (General) degree programme will normally take GEOL 3001 to 3004 inclusive. Students following a single subject BSc (General) degree programme will take GEOL 3001 to 3009 inclusive.

GEOL 3001 Invertebrate Palaeontology

Classification, evolution, adaptive morphology and stratigraphical range of the following invertebrate phyla: Mollusca (Bivalvia, Cephalopoda, Gastropoda), Echinodermata (Crinoidea, Echinoidea), Brachiopoda, Cnidaria, Arthropoda (Trilobita), and Porifera. Microfossils, trace fossils, mass-extinctions and colonising of the land by plants. Practical work involves description and recognition of major forms from each phylum.

GEOL 3002 Phanerozoic Stratigraphy

Stratigraphic principles. Study of Cambrian to Recent stratigraphy of Britain and Ireland, using the concept of orogenic cycles and plate tectonic models. Pleistocene stratigraphy and climate. Practical work includes geological survey map sheets.

GEOL 3003 Precambrian and Geotectonics

Introduction to radiogenic isotope systems and geochronology. Precambrian time subdivisions. Precambrian geological evolution of Canada, Scandinavia, Britain and Ireland. The Dalradian Supergroup. Seafloor spreading. Plate motion studies: Magnetic, seismic and geological methods. Rifts. Destructive plate margins. Accretionary prisms. Orogenic belts: Caledonian, Variscan (Hercynian), Alpine-Himalayan. Practical work on geological survey maps.

GEOL 3004 Applied Geology

Occurrence, mode of formation of metallic ore and industrial mineral deposits. Geochemistry exploration. Petroleum Geology and seismic interpretation. Coal geology. Hydrogeology and engineering geology. *Prerequisite: Second Science Geology.*

GEOL 3005 Geochemistry

Radiogenic and stable isotope geochemistry. Geochronology. Analytical methods. Use of geochemical variation diagrams in crystal-liquid systems. Meteorites and the composition of the solar system; composition and chemical evolution of the Earth and Moon. Element partitioning between crystals and melts; partial melting and fractional crystallization. Silicate magma structure. Chemical weathering, sediment geochemistry and provenance.

GEOL 3006 Sedimentology and Volcanology

Principals of facies and sequence analysis. Earth surface processes. Depositional models. Sedimentary structures and deposits of the main continental, paralic and marine environments. Palaeocurrents and provenance. Volcano eruption mechanisms, pryoclastic and epiclastic deposition. Stratigraphic and plate tectonic context of volcanic and volcaniclastic rocks. Volcanic hazards.

Prerequisites: GEOL 2002, GEOL 2003.

GEOL 3007 Structural, Petroleum Geology Coaxial and non-coaxial deformation and the brittle and ductile structures produced. Volume change and slaty cleavage. Transpression and transtension.

Recognition of shear sense and kinematic indicators. Multiple deformation. Shallow and deep crustal structure. Basin development and analyses. Seismic reflection profiling and seismic stratigraphy. Origin, migration and accumulation of hydrocarbons. Oil exploration. *Prerequisite: Second Science Geology.*

GEOL 3008 Igneous, Metamorphic Petrology

Classification of igneous rocks. Petrogenesis of mid-ocean ridge, subductionrelated, intraplate, rift-related, potassic, ultrapotassic and granitic rocks. Magmatic processes in layered basic intrusions, ophiolites and Alpine peridotites. Geothermobarometry, equilibrium thermodynamics and Schreinemakers' method. Metamorphic reactions, isograds and metamorphic zonal schemes for pelites. Scottish and Irish Dalradian. Blueschist and Granulite facies. Migmatites. Metamorphism of ultramafic rocks. PTt paths and tectonic setting of regional metamorphism. *Prerequisite: GEOL 2003.*

Fourth Year Courses for Honours Degree - GEOL 4000

A more advanced course with further emphasis on the main branches of Geology with additional material on petroleum and ore geology, geotectonics, micropalaeontology, invertebrate palaeontology and isotope geology. Honours students carry out an independent mapping project in the Summer before the Fourth Year to be presented as a thesis and a seminar. In addition students attend regular research seminars.

Palaeontology

Fossil Taxonomy and Micropalaeontology; study of foraminifera, conodonts and calcareous algae; Faunal Provinces; evolution of reefs and their biota; Precambrian fossils and evolution of the biosphere.

Stratigraphy

Upper Palaeozoic Stratigraphy and Sedimentology of NW Europe. North Sea Basin case study: structural control and evolution of sedimentation and hydrocarbon prospectivity in rocks of Devonian to Palaeogene age. Stratigraphic development of the northern Appalachians.

Sedimentology

Sediment yield and erosion rates. Sea level change. Principals and applications of sequence stratigraphy in alluvial, paralic, carbonate and deep-water settings. Carbonate petrography. Compaction and diagenetic modelling. Reservoir architecture. Basin analysis. Extensional, foreland and strike-slip basin fills.

Metamorphic petrology and Precambrian geology

Crustal evolution and tectonics of Laurentia-Baltica from Archaean to Neoproterozoic; tectonics and metamorphism of the Dalradian; geochronology of metamorphic processes; thermobarometry and relative thermobarometry; mixed fluid equilibria; eclogites; granulites and thermal aureoles.

Geological mapwork and tectonic analysis of orogenic belts

Crustal evolution based on integrated analysis of orogenic belts using published geological maps and problem maps and structural, petrological, geochemical and geophysical (including palaeomagnetic) data. Examples include the Lapland-Kola orogen; Caledonian orogen in Ireland, Scotland and Norway; Sveconorwegian orogen in Sweden and Norway.

Granite Petrology

The origin, ascent and emplacement of granites and their variety in place and time. The metallogeny of granites. The evolution of models, as constrained by field and laboratory studies, geochemistry, and experimental petrology world-wide over the last fifty years.

Igneous Petrology

The origin of komatiites and massif anorthosite and their implications for Precambrian earth evolution. The origin and evolution of carbonatitic magmas. Igneous rocks as tracers of the composition and evolution of the mantle.

Ore Geology

The mineralogy, geological setting and origin of metallic mineralisation illustrated by examples of globally important ore deposit types.

Petroleum Geology

The principles and application of wireline logging, seismic and sequence stratigraphy and drill stem testing. Basin analysis and petroleum play synthesis with special emphasis on the basins of the Middle East and the Irish offshore.

Structural Geology

Derivation of kinematics from structural features. Thrust belts and ophiolite obduction. Models of thrusting, gravity gliding and extension. Section balancing. Non-plane strains, their origin and strain superimposition.

Tectonics

Tectonic development and deep crustal structure of the northern Appalachians and the Caledonides. Episodicity of orogeny.

Field Work in Geology

Field work is an important part of geological training. In addition to field classes referred to under First and Second Science curricula, Third Year honours students and those following an 8 unit BSc (General) degree programme attend two weekend field classes in Ireland and a 9 day extended field class in the southern UK or southern Spain, in the Spring vacation. Fourth Year honours students attend three weekend field classes in Ireland, a 7 day extended mapping class in Ireland at the end of the session and an 8 day field class in southern Spain or Greece in the Spring vacation. Honours students do an independent mapping project before or at the start of their final year. The costs of field classes in Second, Third and Fourth Years are largely covered by the Department.

GEOPHYSICAL SCIENCE

Programme Director: Dr Christopher J. Bean, Department of Geology

This degree programme is primarily designed as a two-year programme following completion of Second Science, leading to the award of an honours degree. (See regulations for Topical Degree p. 31).

Second Year Course for General and Honours Degrees

Students take Mathematics, Experimental Physics and Geology.

Third Year Course for General and Honours Degrees

Students take eight core units which are GEOL 3002, GEOL 3003, GEOL 3008, GEOL 3009, EXPH 3005, EXPH 3008, EXPH 3010 and either GEOL 3010 or GEOL 4013.

Students also take two additional units to be decided in consultation with the Course Director.

Fourth Year Course for the Honours Degree

Students take GEOL 3004, GEOL 3006, GEOL 3007, GEOL 4014, EXPH 3006, EXPH 3009, EXPH 4008 and either of GEOL 3010 or GEOL 4013, whichever has not been taken in the Third Year.

In addition, all fourth year students are required to complete a geophysical field or laboratory project during the course of the year. In the case of field projects, the data is collected in the summer before the start of the Fourth Year. This will be presented in thesis form as part of the final degree examination assessment.

The Third and Fourth Year courses involve both geological and geophysical field classes.

It is intended that graduates with the honours degree will have the relevant background in Geology, Geophysics and Experimental Physics to obtain employment as geophysicists or to proceed to MSc or PhD programmes in Geophysics.

Courses in Geophysics

GEOL 3009 Applied Geophysics

Gravity methods. Magnetic methods. Engineering and exploration seismology. Applied tomography. Electromagnetic exploration techniques. Electrical methods in exploration. Side scan sonar. Borehole methods. Ground penetrating radar. Survey design. Position fixing.

GEOL 3010 Seismology, Global Geophysics Material flow properties, strain rate and viscosity. Time and temperature effects on rheology. Earthquake location, quantification, source mechanisms. Models for earthquake genesis. Friction. Fracturing, failure, brittle-ductile transitions. Seismic cycle, earthquake prediction. Seismotectonics. Seismic radiation and

deep structure. Wave attenuation. Tomography. Long period oscillations of the earth.

GEOL 4013 Data Processing and the Crust

Time series analysis. Seismic reflection and refraction data processing. Forward modelling techniques and synthetic seismograms. Synthetic random media. Ray tracing. Vertical seismic profiles. P- and S-wave studies of the crust. Reflection seismic data interpretation. Sequence stratigraphy. Petrophysics. Potential field data processing and analysis.

GEOL 4014 Topics in Geophysics

Topics related to current research and state-of-the-art ideas not covered in other units.

These courses are available to Third Year students in other departments provided they have an adequate background in Experimental Physics and/or Geology.

HISTORY AND PHILOSOPHY OF SCIENCE

PHIL 3901 History and Philosophy of Science

Origins and growth of 'western' science from ancient Greece to seventeenth century Europe. The role of mathematics in science; foundations of mathematics. Unification, explanation and causality in science: physics from 17th to 20th century; reductionism in biology. The logic of science: induction; structure of scientific revolutions; incommensurability and scientific realism.

INDUSTRIAL MICROBIOLOGY

Second Year Courses for General and Honours Degrees

INDM 2001 The Microbial World

An introduction to the biodiversity of microorganisms; contrasts between prokaryotic and microeukaryotic organisms; systems for classifying bacteria and fungi together with the biology of the main groups; an examination of growth, reproduction and survival of microorganisms and their applications. *Corequisite: INDM 2002.*

INDM 2002 Nutrition and Metabolism

Growth, energy and nutrition; carbon utilisation in aerobic and anaerobic growth; fermentation and respiration; ATP generation and growth rate. Key metabolic intermediates and their relevance in industrial microbiology. Protein structure, classification, quantification and properties of enzymes. Introduction to enzyme technology.

Corequisite: INDM 2001.

INDM 2003 Microbial Genetics

Nucleic acid structure and functions. The bacterial chromosome and reproduction. Extrachromosomal genetic elements. Gene transfer in bacteria. Mutagenesis. Control of gene expression. Diploids and merodiploids. Phenotype expression.

Prerequisites: INDM 2001, INDM 2002.

INDM 2004 Microbes, Man and Environment Assessment of microbial activity in the environment with reference to important environmental processes mediated by microorganisms. Microorganisms and the infection cycle. Microorganisms and the food chain. Industrial products of economic significance from microorganisms. Prerequisites: INDM 2001, INDM 2002, INDM 2003.

Third Year Courses for General and Honours Degrees

Prerequisite for all units: INDM 2001 to INDM 2004 inclusive.

Students taking the BSc General degree may take either <u>four</u> (INDM 3001 to INDM 3004) or <u>six</u> (INDM 3001 to INDM 3006) units in Industrial Microbiology together with other appropriate units up to a maximum of ten, as specified in the section of this booklet dealing with "*Regulations for Third Year Science Students*".

Students not taking Industrial Microbiology as a full subject but wishing to select optional units from the Industrial Microbiology programme, must have the approval of the Head of the Department of Industrial Microbiology.

INDM 3001 Bacteriology and Mycology

Structure-function relationships within the prokaryotic cell. Methods of studying cell structure and function. The contribution of organelles to bacterial activities. Fungal nutritive modes. Fungi as agents of decay and disease in plants and animals. Bacteria and fungi as producers of secondary metabolites.

INDM 3002 Physiology and Biochemistry

Biosynthesis of amino acids and nucleotides. Metabolic pathways and molecular biotechnology. Industrial production of amino acids. Principles of microbial growth and cultivation. Fermentation systems - development and application of batch, fed-batch and continuous culture techniques. Environmental factors influencing microbial growth.

INDM 3003 Industrial Microbiology

Principles of biotechnological processing: Bioreactor design, process analysis and models. Case studies from the brewing and fermentation industries. Food Microbiology: Microbial sources of contamination. Food spoilage and factors influencing it. Traditional and alternative methods of preservation.

INDM 3004 Environmental Microbiology

Ecology and environmental interactions of microorganisms in diverse ecosystems. An assessment of microbial activities within the soil, freshwater and marine environments. Pollution of natural waters and the role of microorganisms in waste treatment. Microorganisms in extreme environments.

Courses for Honours Students

Students taking an Honours Degree in Industrial Microbiology will take units INDM 3001 to INDM 3008 inclusive.

Students must select their courses in consultation with the Head of Department. All Honours students in Industrial Microbiology will be required to undertake a literature survey and to present written and oral reports.

Prerequisites for all units: INDM 3001 to INDM 3004 inclusive.

INDM 3005 Healthcare Microbiology

Microbial spoilage. Prediction of product shelf-life. Antiseptics, disinfectants and preservatives. Principles and practice of sterilisation. Application of microorganisms in biotransformation/synthesis of pharmaceuticals. Quality function in the healthcare industry. Process monitoring and validation. Controlled environments, clean-air maintenance and standards. Antibiotics, activity spectra and mechanisms of anti-microbial action. Infectious drug resistance.

INDM 3006 Medical Microbiology

Basic immunology and antigen/antibody reactions. Spread of infection and 'host-parasite' relationships. Bacteriology: Anaerobic infections, zoonoses, enterobacteria, bacterial chemotherapy and sterilisation. Virology: Introduction, morphology, replication and classification of DNA and RNA viruses. Enteroviruses, herpes-viruses, myxoviruses, tumor viruses, hepatitis and diagnostic virology.

INDM 3007 Gene Expression and Regulation

Theory and practice of mutation. Principles and practice of gene manipulation. Industrial strain development. Gene expression in prokaryotes and eukaryotes. Overexpression of cloned genes.

INDM 3008 *Applied Enzymology* Enzymes as industrial catalysts. Enzyme development for large scale processes screening, production, purification and applications. Kinetics and applied enzymology.

Fourth Year Courses for Honours Degree - INDM 4000

Courses are selected, in consultation with the Head of Department, from the topics listed below. All students are required to undertake a substantial laboratory-based research project. Successful students may opt to undertake a project in a research laboratory in industry or a research institute. On completion of the project it is presented in the form of a thesis, which forms part of the degree examination. An oral presentation is also required for assessment. Attendance of students at Department seminars is obligatory.

- INDM 4001 Topics in Bacteria and Fungi INDM 4002 Enzyme Technology INDM 4003 Applied Microbial Genetics INDM 4004 Food Science INDM 4005 Fermentation Science INDM 4006 Adv. Environ. Microbiology I INDM 4007 Medical Microbiology INDM 4008 Process Microbiology INDM 4009 Developments in Biotechnology INDM 4010 Bio-separation Techniques INDM 4011 Advances in Food Microbiology INDM 4012 Current Topics in Bacteria INDM 4013 Current Topics in Fungi INDM 4014 Microbial Genetics INDM 4015 Adv. Environ. Microbiology II INDM 4016 Adv. Environ. Microbiology III INDM 4017 Food Microbiology
- INDM 4018 Statistics Laboratory Assays

LANGUAGES

The Applied Language Centre offers a number of courses, one of which may be selected as an optional unit by Third Science students.

LANG 3001 Beginners German for Science LANG 3002 Beginners Japanese for Science LANG 3003 Advanced French for Science (Post-Leaving Certificate) LANG 3004 Advanced German for Science (Post-Leaving Certificate)

For *Beginners* courses, no previous knowledge of the language is needed. The following topics are covered: oral communication in everyday situations; introduction to scientific reading texts; basic grammatical structures; functional writing.

For *Post-Leaving Certificate* courses, students should note that Leaving Certificate or the equivalent standard is required. Courses cover the following topics: communicating in face-to-face professional situations; making oral presentations; skills in listening comprehension; functional writing skills, e.g. report-writing, correspondence, etc.

MATHEMATICS

Second Year General Courses

- MATH 2201 Calculus of Several Variables Functions of several variables. Partial derivatives. Optimization and Lagrange multipliers. Double integrals. Gradient, divergence, curl.
- MATH 2202 *Linear Algebra* Vector spaces, bases and dimensions. Linear transformations. Diagonalization of real symmetric matrices.
- MATH 2203 *Infinite Series* Convergence tests for sequences and series. Power series. Taylor series and Fourier series. Series solutions of ordinary differential equations.
- MATH 2204 *Probability and Statistics* Random variables, expected values and variance. Conditional probability. Sampling, confidence intervals and hypothesis testing.

Second Year Honours Courses

- MATH 2101 Vector Spaces and Linear Transformation Linear independence, bases and dimension. Kernel and images. The rank-nullity theorem. Determinants.
- MATH 2104 Functions of Several Variables Partial and directional derivatives. Critical points and Lagrange multipliers. Implicit function theorem. Integration.
- MATH 2105 Number Theory and Group Theory Euclid's algorithm. The algebra of congruences. Groups, subgroups and homomorphisms. Lagrange's theorem. The Fermat-Euler theorem.
- MATH 2106 Introduction to Analysis The supremum axiom, sequences and series. Properties of continuous functions. Power series.

Third Year General Courses

Courses offered are chosen from the list of courses set out below.

MATH 3201 Complex Analysis

Analytic functions. Cauchy's theorem and Cauchy's integral formula. Integrals and residues.

MATH 3202 Mathematical Techniques

Functions of one and several variables. Partial derivatives and differential equations. Eigenvectors and eigenvalues. Applications to chemistry. *This course is not available to students who have taken Second Year Mathematics.*

- MATH 3203 Advanced Calculus Vector fields. Green's theorem. Stokes's theorem and the divergence theorem. Fourier and Laplace transforms with applications to differential equations.
- MATH 3204 *Groups and Vector Spaces* Permutation groups, matrix groups and symmetry groups. General properties of groups. Representations of groups by matrices.
- MATH 3205 Combinatorial Mathematics

Congruences and finite fields. Error-detecting and error-correcting codes. Hamming codes, Huffman codes, RSA codes. Information and entropy. Shannon's first theorem.

- MATH 3206 *Linear Programming* Formulation of linear programmes problems. The simplex algorithm. Duality.
- MATH 3207 *Graph Theory* Trees. Paths and circuits in graphs. Planar and dual graphs. Graph-theoretic algorithms.
- MATH 3208 Mathematical Logic

Formal systems and rules of deduction. Consistency and completeness. First order languages. Godel-Henkin completeness theorem. Resolution in the propositional calculus.

MATH 3209 Special Topics Courses on special topics may be offered, depending on demand. Students may also be given permission to take part of an Honours course as a Special Topic.

Third Year Honours Courses

MATH 3102 Field Theory

Extensions of fields. Algebraic closure. Norms and traces. Galois theory and solvability by radicals.

MATH 3103 Foundations of Analysis Set theory and cardinality. The axiom of choice. The supremum axiom and its consequences. Introduction to Riemann integration.

MATH 3104 Functions of One Complex Variable

Cuachy's integral theorem and residue theory. Principle of the argument. Rouche's theorem. Schwarz's lemma. Conformal mappings and Riemann mapping theorem.

MATH 3105 Logic and Discrete Mathematics Binary logic. Predicates and quantifiers. Axiomatic systems, consistency and completeness. Axiomatic set theory. Lattices and Boolean algebras.

- MATH 3106 *Algorithms* Graph-theoretic algorithms. Greedy algorithms. Divide and conquer methods. Number-theoretic algorithms. Matrix problems and linear systems. Efficiency and complexity.
- MATH 3107 *History of Mathematics* Mathematics of ancient civilizations. Number systems. Euclid and Archimedes. Development of algebra. Discovery of calculus. Geometric construction problems. Greek astronomy.
- MATH 3108 Special Topics
- MATH 3109 Advanced Linear Algebra Rings. Polynomial algebra. Characteristic and minimal polynomials. Canonical forms of matrices.

Fourth Year Honours Courses

Eight units must be chosen. A student's choice of units is subject to the approval of the Head of the Mathematics Department.

MATH 4101 Ring Theory

Rings and modules. Noetherian rings. Hilbert's Nullstellensatz. Simple rings and semisimple rings. Artin-Wedderburn theorem. Burnside's theorem.

MATH 4102 Group Theory

Sylow theorems. Advanced topics in the theory of groups: finite *p*-groups, local analysis, *p*-nilpotence, the transfer.

- MATH 4103 *Combinatorics* Recurrence relations and generating functions. Principle of inclusion and exclusion. Ramsey theory. Latin squares. Designs. Finite geometries.
- MATH 4104 *Measure Theory* Measure spaces and measurable functions. Integrability. Dominated convergence theorem. Product measures. Radon-Nikodym theorem.
- MATH 4105 *Differential Geometry* Differentiable atlases. Manifolds and submanifolds. Tangent bundles and vector fields. Riemannian manifolds. Curvature and torsion. Dynamical systems.

MATH 4106 Functional Analysis

Topological vector spaces and linear mappings. Hahn-Banach theorem. Banach-Steinhaus theorem. Hilbert spaces. Riesz-Fischer theorem. Geometry of Banach spaces.

- MATH 4107 *Numerical Analysis* Weierstrass approximation theorem. Cubic splines. Functional iteration. Newton's method. Aitken's method. Ordinary differential equations. Partial differential equations and Poisson's equation in two dimensions.
- MATH 4108 *Financial Mathematics* Rates of interest. Annuities, discount, capital redemption policies. Consumer credit, immunization, stochastic interest rate, mortality.
- MATH 4109 Topology

Topological spaces and continuous maps. Compactness, connectedness. Separation axioms. Compactification. Quotient spaces.

MATH 4110 Commutative Algebra

Polynomial algebras and affine varieties. Dimension theory of comutative rings. Localization and completion. Projective varieties and graded algebras. Spectra of rings.

MATH 4111 Several Complex Variables

MATH 4112 Special Topics

Fourth Year Honours students may, with the consent of the Head of Department, substitute an appropriate course or courses in Mathematical Physics for one or more of their Mathematics courses.

MATHEMATICAL PHYSICS

Second Year Pass Courses

MAPH 2011 Mechanics I

Particle Dynamics: Forced and damped harmonic oscillations. Resonance. Motion of a particle under central forces. Central orbits. Planetary and satellite motion.

Introduction to Special Relativity: Lorentz transformation and relativistic kinematics.

MAPH 2021 Mechanics 2

Rigid body dynamics: Vector identities. Indicial notation. Kronecker delta. Eigenvalues and Eigenvectors of symmetric 3×3 matrices. Gibbs decomposition. Rigid body motion with one point fixed. Angular velocity. Kinetic energy. Inertia tensor. Examples. Angular momentum. Applied torque. Spinning top.

Introduction to Analytical Mechanics: Lagrange's equations for a conservative system.

MAPH 2031 Methods 1

Applied Vector Calculus: Surfaces and curves in space: Line integrals. Work and potential. Introduction to partial differentiation. Grad, Div and Curl. Stationary values of functions of many variables: Lagrange multipliers. Multiple integrals. Cylindrical, polar coordinates. Surface, volume integrals. Divergence and Stokes' Theorems. Mass, moments of inertia and potential. Continuity equation.

MAPH 2041 Methods 2

Linear ordinary differential equations. Solution in series. Special functions. Separation of variables for partial differential equations. Eigenvalue problems. Factorisation method. Fourier series. Wave equation.

Second Year Honours Courses

MAPH 2111 Methods A

Vector Calculus:

Vector differentiation (Frenet-Serret formulae). Directional derivatives, Grad, Div, Curl. Vector integration (line, surface and volume integrals). Integral Theorems (Divergence theorem and Stokes' theorem with proofs). Grad, Div and Curl in Orthogonal curvilinear coordinates.

Linear Differential Equations:

Existence and uniqueness of solutions, dimension of solution space, Wronskians, Green's functions.

MAPH 2121 Mechanics A

Dynamics of rigid bodies, rotating earth, spinning top, moments of inertia, principal axes, Euler's equations of motion. Lagrange's equation, variational principles. Small oscillations, normal modes.

MAPH 2131 Mechanics B

Hamiltonian Mechanics: Hamilton's equations, canonical transformations, Poisson brackets, Hamilton-Jacobi theory.

Special Relativity: Inertial frames, Lorentz transformations, spacetime, tensors, relativistic mechanics, energy-momentum conservation.

MAPH 2141 Computational Physics

Errors and floating point arithmetic. Systems of linear equations (coupled harmonic oscillators). Interpolation and data modelling. Gaussian integration (scattering by a central potential). Initial value and boundary value ordinary differential equations (chaotic behaviour, planetary orbits). Monte Carlo methods (Ideal gas model).

Third Year Courses

Students taking the BSc (General) Degree must take a minimum of four units: MAPH 3010, MAPH 3020, MAPH 3030 and either MAPH 3041 or MAPH 3071.

Students taking the BSc (Single Honours) Degree must take eight units. Students who have taken the Second Year Honours courses take MAPH 3111 to MAPH 3181. Students who have not taken the Second Year Honours courses take MAPH 2111, MAPH 2121, MAPH 2131, MAPH 3111, MAPH 3121, MAPH 3131, MAPH 3161 and MAPH 3171.

Students taking the BSc (Joint Honours) Degree must take five units: MAPH 3111, MAPH 3121, MAPH 3131, MAPH 3161 and MAPH 3171.

Students should consult the Department about prerequisites. Units MAPH 3081, MAPH 3211 and MAPH 3231 may not be offered every year. Unit MAPH 3030 cannot be taken as a minor unit.

MAPH 3010 Mechanics 3

Dynamics of rigid bodies, rotating earth, spinning top, moments of inertia, principal axes, Euler's equations of motion. Lagrange's equations, variational principles. Small oscillations, normal modes.

MAPH 3020 Mechanics 4

Hamiltonian Mechanics: Hamilton's equations; canonical transformations, Poisson brackets, Hamilton-Jacobi theory.

Special Relativity: Inertial frames, Lorentz transformations, spacetime, tensors, relativistic mechanics, energy-momentum conservation.

MAPH 3030 Electrostatics/Quantum Mechanics

Electrostatics: electrostatic potential; Gauss's law; Poisson's equation; dielectrics; electrostatic energy.

Quantum Mechanics: Postulates of quantum mechanics, uncertainty principle, one-dimensional systems including the harmonic oscillator, angular momentum, hydrogen atom, time evolution.

MAPH 3041 Methods 3

Partial Differential Equations of Physics

First order ordinary differential equations. Systems of first order linear and nonlinear ordinary differential equations; critical points and stability. First order linear and non-linear partial differential equations and the method of characteristics. Classification of second order linear partial differential equations. Integral transforms.

MAPH 3071 Numerical Methods

Solution of equations by iteration. Numerical integration and differentiation. Numerical methods for differential equations. Systems of linear equations. Gauss elimination.

MAPH 3081 Computational Physics

Ordinary differential equations; initial value (satellite motion and chaotic systems) and boundary value problems (energy eigenvalues of Schrödinger's equation). Partial differential equations; finite differences and finite elements

(wave motion, heat transfer equation, Schrödinger's equation and Poisson's equation). Monte Carlo methods; kinetic theory of gases and the Ising model for ferromagnetism.

MAPH 3111 Methods B

Complex Variables:

Cauchy-Riemann equations, singular points. Complex integration (Cauchy's theorem, line integrals). Taylor and Laurent series. The Residue Theorem. *Euclidean Spaces:*

Convergence, Bessel's inequality, Parseval's equality. Fourier series (Piecewise continuous functions, Riemann-Lebesgue lemma, Weierstrass approximation theorem, Pointwise convergence). Orthogonal series of polynomials (Legendre polynomials, Hermite polynomials, Laguerre polynomials, Bessel functions).

MAPH 3121 Continuum Mechanics (Hons)

Cartesian Tensors: Change of frame, alternating symbol, decomposition theorems of Gibbs and Hamilton, polar decomposition theorem, isotropic tensors, integral theorems, reciprocal triads, spectral decomposition.

Continuum Mechanics: Kinematics. Change in volume, area. Shear, special deformations, infinitesimal strain. Material, spatial coordinates, material time derivative, stretching, shearing. Balance laws. Equations of motion. The stress tensor.

MAPH 3131 Thermodynamics and Methods

Thermodynamics: Laws of thermodynamics, temperature, entropy, Clausius's theorem, Maxwell's relations.

Kinetic Theory: Maxwell's distribution, the Boltzmann equation, Maxwell-Boltzmann distribution.

Methods: Boundary Value Problems: Regular singular points, separation of variables, Laplace and Fourier transforms. Applications of wave, heat, Laplace's and Bessel's equations. Derivations of these equations. Initial and boundary conditions.

MAPH 3141 Potential Theory*

Electrostatics: electrostatic potential; Gauss's law; Poisson's equation; dielectrics; electrostatic energy. Magnetic fields due to steady currents: vector potential; Ampère's circuital law; magnetic materials.

MAPH 3151 Electromagnetic Theory (Hons) *

Maxwell's equations. Energy and momentum: Poynting vector. Plane waves in non-conducting and conducting media. Wave guides. Radiation from bounded sources. Liénard-Wiechert potentials. Relativistic formulation of electromagnetic theory.

MAPH 3161 Quantum Mechanics

This course is an introduction to Quantum Mechanics:

Hilbert spaces, operators, probability measures, spectral measures. Postulates of quantum mechanics, uncertainty principle, harmonic oscillator, creation and annihilation operators, angular momentum, hydrogen atom, Rayleigh's variational principle, time evolution in the Schrödinger picture and Heisenberg picture.

MAPH 3171 Fluid Mechanics

Representation of fluid flow, elementary physical considerations, Stokes' analysis, velocity potential for irrotational flows, stream functions for incompressible flows, Navier Stokes' equations, inviscid flow equations, motion of a sphere through an incompressible fluid, 2D incompressible flows, conformal transformations, sound waves, water waves.

MAPH 3181 Methods C Applied Analysis

MAPH 3211 General Relativity & Cosmology

This course is an introduction to General Relativity and Cosmology: Tensor calculus. Einstein's field equations. Static and stationary black holes. Energy extraction from rotating black holes. Cosmological models.

MAPH 3220 Electromagnetic Theory (Minor)

Electrostatics. Magnetostatics. Maxwell's equations. Plane electromagnetic waves. Scalar and vector potentials, radiation. Relativistic formulation of electromagnetic theory.

MAPH 3231 Gauge Field Theory

This course is an introduction to Gauge Field Theory: Introduction to Lie groups and Lie algebras. Yang-Mills field equations. Magnetic monopole and instanton solution. Gauge theory of the standard model of Electro-Weak interactions.

* Units MAPH 3141 and MAPH 3151 must be taken together.

Fourth Year Courses for Honours Degree

Students taking the BSc (Single Honours) Degree must take seven courses and students taking the BSc (Joint Honours) Degree must take four courses. Subject to the approval of the Head of Department, appropriate Honours courses in Mathematics or Experimental Physics may be taken in place of some of these courses.

MAPH 4111 Methods I

First order partial differential equations. Second order linear partial differential equations - classification, uniqueness, stability. The wave equation , diffusion equation and Laplace's equation. Green's functions. Perturbation methods.

MAPH 4121 Methods II

Differential Geometry:

Tensor algebra. Differentiable manifolds. Affine connections. Torsion tensor. Curvature tensor of a connection. Pseudo-Riemannian manifolds. Riemann curvature tensor. Bianchi identities, Ricci identities.

Functional Analysis:

Hilbert spaces. Bounded and unbounded operators. Adjoints of operators. Selfadjoint extensions. Spectral theory. The Spectral Theorem for bounded and unbounded self-adjoint operators.

MAPH 4131 Continuum Mechanics

Analysis of strain - finite and infinitesimal. Balance of mass, momentum, moment of momentum. Stress. Existence of stress tensor. Principal stresses. Maximum shear stress. Equations of motion. Finite elasticity. Classical linear elasticity. Beltrami-Mitchell equations. Uniqueness theorem. Reciprocal theorem. Elastic waves. Waves in ideal fluids. Viscous flow problems.

MAPH 4141 Quantum Mechanics

Periodic potential, energy bands. Approximation methods of bound states, Helium atom. Zeeman effect. Angular momentum, Clebsch-Gordon coefficients, Wigner-Eckart theorem. Non-relativistic hydrogen atom with spinning electron. Relativistic theory of the electron. Scattering theory.

MAPH 4151 Statistical Mechanics

Classical Statistical Mechanics:

The microcanonical ensemble, time averages, ergodicity. The canonical and grand-canonical ensemble, equivalence of ensembles, the thermodynamic limit and phase transitions. Lattice gases and magnetic systems. *Ouantum Statistical Mechanics:*

Trace class operators, density matrices, Fock space, ideal Bose and Fermi gases, Bose-Einstein condensation, lattice models, the Mermin-Wagner argument.

MAPH 4161 Computational Physics (from session 2001/2002)

Parabolic equations in one space variable (Schrödinger equation, Diffusion equation). Parabolic equations in two and three dimensions – ADI methods. Hyperbolic equations – Lax Wendroff scheme, flux-limiter methods (fluid dynamics, wave equation). Consistency, convergence and stability. Elliptic equations (Poisson's equation). Finite element method. Metropolis Algorithm (Ising Model), Quantum Monte Carlo (Molecular dynamics).

MAPH 4171 General Relativity

Einstein's field equations. Physical interpretations of the energy-momentumstress tensor. Newtonian approximation. The Schwarzschild solution. The Kruskal extension of the Schwarzschild manifold. Experimental tests. Interior Schwarzschild solution. Kinematics of a continuous medium. The Robertson-Walker cosmos. The equation of geodesic deviation. Plane gravitational waves and their interaction with clusters of test particles.

(This course requires MAPH 4181, or MAPH 3141 and MAPH 3151, and parts of MAPH 4121 as pre/corequisites.)

MAPH 4181 Electromagnetic Theory

Electrostatics: electrostatic potential; Gauss's law; Poisson's equation; dielectrics; electrostatic energy. Magnetic fields due to steady currents: vector potential; Ampère's circuital law; magnetic materials. Maxwell's equations. Energy and momentum: Poynting vector. Plane waves in non-conducting and conducting media. Wave guides. Radiation from bounded sources. Liénard-Wiechert potentials. Relativistic formulation of electromagnetic theory.

(This course may only be taken in conjunction with MAPH 4131, MAPH 4141 or MAPH 4171. Students who have taken modules MAPH 3141 and MAPH 3151 cannot take module MAPH 4181).

MAPH 4191 Theoretical Astrophysics

Theory of astrophysical gas dynamics; shock waves, accretion flows, ideal magnetohydrodynamics, supernova remnants and the interstellar medium. Radiative processes and the theory of radiative transfer. Elements of nuclear and high energy astrophysics. Galactic dynamics.

MAPH 4211 Numerical Analysis*

Berstein polynomials. Weierstrass approximation theorem. Lagrange and Hermite interpolation polynomials. Cubic splines. Functional iteration. Second order functional iteration. Newton's method. Method of false position. Aitken's method.

Integration. Ordinary differential equations. Introduction to partial differential equations and Poisson's equation in two dimensions. Linear algebraic equations. Iterative methods. Matrix eigenvalues.

* This course is given jointly with the Mathematics Department.

SYLLABUS FOR THREE YEAR HONOURS DEGREE IN MATHEMATICAL PHYSICS

Second Year Courses

Mathematical Physics

MAPH 2111	Methods A
MAPH 2121	Mechanics A
MAPH 2131	Mechanics B
MAPH 3111	Methods B
MAPH 3121	Continuum Mechanics (Hons)
MAPH 3131	Thermodynamics and Methods
MAPH 3161	Quantum Mechanics
MAPH 3171	Fluid Mechanics

Mathematics

Students follow the Second Year Honours course in Mathematics.

Third Year Courses

Mathematical Physics

Students must choose eight courses from the following list. Units from other subjects may be substituted, with the approval of the relevant Heads of Departments. The final selection of all courses must have the approval of the Head of the Mathematical Physics Department.

MAPH 4111 Methods I
MAPH 4121 Methods II
MAPH 4131 Continuum Mechanics
MAPH 4141 Quantum Mechanics
MAPH 4151 Statistical Mechanics
MAPH 4161 Computational Physics (from session 2001/2002)
MAPH 4171 General Relativity
MAPH 4181 Electromagnetic Theory
MAPH 4191 Theoretical Astrophysics
MAPH 4211 Numerical Analysis

MATHEMATICAL SCIENCE

First Year Courses

For details of First Year Courses, see pages 27 to 32.

Second Year Courses

Students take the following courses.

Mathematics

MATH 2101 Vector Spaces and Linear Transformations
MATH 2102 Advanced Linear Algebra
MATH 2103 Metric Spaces
MATH 2104 Functions of Several Variables

Mathematical Physics

MAPH 2111 Methods A MAPH 2121 Mechanics A MAPH 2131 Mechanics B MAPH 2141 Computational Physics

Statistics STAT 2205 Statistical Theory I: Probability STAT 2206 Statistical Theory II: Statistical Inference

STAT 2207 Statistical Theory III: Bayesian Statistics and Stochastic Processes STAT 2221 Introduction to Statistical Methods

Third Year Courses

Students take ten units with at least two units from each subject. The combination of courses must be approved by the Course Director.

Mathematics

MATH 3101 Number Theory and Group Theory
MATH 3102 Field Theory
MATH 3103 Foundations of Analysis
MATH 3104 Functions of One Complex Variable
MATH 3105 Logic and Discrete Mathematics
MATH 3106 Algorithms
MATH 3107 History of Mathematics
MATH 3108 Special Topics

Mathematical Physics

MAPH 3111 Methods B
MAPH 3121 Continuum Mechanics (Hons)
MAPH 3131 Thermodynamics and Methods
MAPH 3141 Potential Theory
MAPH 3151 Electromagnetic Theory (Hons)
MAPH 3161 Quantum Mechanics
MAPH 3171 Fluid Mechanics
MAPH 3181 Methods C

Statistics

STAT 3208 Statistical Methods I STAT 3209 Statistical Methods II STAT 3210 Data Analysis and Statistical Software STAT 3216 Actuarial Statistics I STAT 3217 Actuarial Statistics II

Fourth Year Courses

Students take the equivalent of 12 units chosen from the courses listed below. The courses in Mathematics and Mathematical Physics are equivalent to 1.5 units and the courses in Statistics are equivalent to one unit. The combination of courses must be approved by the Course Director.

Mathematics

MATH 4101 Ring Theory MATH 4102 Group Theory MATH 4103 Combinatorics MATH 4104 Measure Theory MATH 4105 Differential Geometry MATH 4106 Functional Analysis MATH 4107 Numerical Analysis MATH 4108 Financial Mathematics

MATH 4109 Topology MATH 4110 Commutative Algebra MATH 4111 Several Complex Variables MATH 4112 Special Topics

Mathematical Physics

MAPH 4111	Methods I
MAPH 4121	Methods II
MAPH 4131	Continuum Mechanics
MAPH 4141	Quantum Mechanics
MAPH 4151	Statistical Mechanics
MAPH 4161	Computational Physics (from session 2001/2002)
MAPH 4171	General Relativity
MAPH 4181	Electromagnetic Theory
MAPH 4191	Theoretical Astrophysics

Statistics

STAT 4211	Data Analysis I
STAT 4212	Applied Statistics I
STAT 4213	Applied Statistics II
STAT 4214	Time Series Analysis
STAT 4215	Multivariate Analysis
STAT 4232	Topics in Biostatistics
STAT 4233	Nonparametric Statistics
STAT 4235	Survival Analysis
STAT 4238	Data Analysis II

PHARMACOLOGY

Second Year Courses for General and Honours Degrees

- PHAR 2001 Introduction to Pharmacological Principles Membrane structure and transport of drugs across cell membranes. Drug disposition including drug routes of administration, absorption, distribution, metabolism and excretion. Pharmacokinetics. Drug receptors and receptor theory. Introduction to nerve and muscle pharmacology.
- PHAR 2002 Neuropharmacology I

Structure and function of autonomic nervous system. Autonomic pharmacology. Cholinergic and adrenergic drugs. Structure and function of central nervous system. Introduction to CNS pharmacology: Membrane stabilizing drugs and neurotransmitter modulators with CNS activity.

- PHAR 2003 Cardiovascular, Respiratory, Renal and Gut Pharmacology Body fluids. Cardiovascular system. Introduction to antihypertensive therapy. Respiratory system. Antiasthmatic drugs. Renal pharmacology. Diuretics. Alimentary tract, gut movements, digestion and absorption.
- PHAR 2004 Introductory Endocrine Pharmacology and Immunopharmacology Chemotherapy. Introduction to endocrinology, insulin and cortisol. The immune system: Immunopharmacology. Inflammation. Anti-inflammatory drugs. Introduction to chemotherapeutic agents.

Third Year Courses for General and Honours Degree Students

- PHAR 3001 *Chemotherapeutic Agents* Introduction to microbial cell biology. Mechanism of action of antibacterial drugs. Antimicrobial therapy. Cytotoxic drugs and cancer treatments.
- PHAR 3002 *Neuropharmacology II* Advanced pharmacology including structure activity relationships of drugs affecting peripheral and central nervous systems. Behavioural and psychopharmacology.
- PHAR 3003 Endocrine and Reproductive Pharmacology. Autocoids. Pharmacology of the endocrine and reproductive systems. Audocoids, local hormones, biogenic amines, prostaglandins, kinins, substance P.

PHAR 3004 Toxicology

General principles, statistical evaluation, toxicity testing, routes of entry, metabolism, excretion, pollutants, pesticides, heavy metals, food additives. Mutagenesis, teratogenesis, carcinogenesis.

Courses for Third Year Science Honours Degree Students

- PHAR 3005 Topics covered with associated tutorials and reference lists on novel aspects include: advanced central nervous system Pharmacology (neuroactive agents); advanced central nervous system Pharmacology (dopamine receptors); advanced renal Pharmacology and Toxicology; and muscle Pharmacology.
- PHAR 3006 Topics covered with associated tutorials and reference lists on novel aspects include: intracellular signalling (heterotrimeric G-proteins, tyrosine kinases and estrogen receptor action) and peptide Pharmacology.

PHAR 3008 Molecular biological analysis of therapeutic targets

General structure and function of a group of membrane receptors and kinases; 3-D structural analysis of these proteins; primary structure of receptor proteins – functional and structural motifs; receptor encoding genes, structure and expression; cloning of receptor genes/gene families and bioinformatic and functional characterisation of the cloned genes; recombinant receptors as drug discovery tools; receptor and kinase gene polymorphisms and their analysis; natural receptor mutations and associated diseases; strategies for mutant receptor replacement by gene therapy; pharmacogenomics (selected topics).

STAT 3221 *Biostatistics* For course details see under Statistics.

GENE 3001 For course details see under Genetics.

Fourth Year Courses for Honours Degree Students - PHAR 4100

Advanced courses (10 lectures/tutorials per course) are given in specialised areas of pharmacology. These include:

PHAR 4001 Atherosclerosis/antithrombotic agents
PHAR 4002 Neuropharmacology
PHAR 4003 Cancer studies
PHAR 4004 CNS Dopamine Receptors/Drug Development
PHAR 4005 Biology of Nitric Oxide
PHAR 4006 Cytokine Receptors/Muscle Pharmacology
PHAR 4007 Statistics of Laboratory Assays
GENE 4001 Eukaryotic Genome (For details of unit see under Genetics).
PHAR 4009 Molecular Biology of Steroid Hormone Receptors
PHAR 4010 Immunopharmacology
PHAR 4011 Renal Pharmacology and Toxicology

A research project is carried out under the direction of individual academic staff members and the completed project is presented in thesis form for the degree examination. Oral presentations of research work are also required.

Students are required to attend at departmental research seminars and small-group discussion sessions.

PHYSIOLOGY

Second Year Courses for General and Honours Degrees

PHYS 2004 General Physiology

Cell structure, intracellular organelles. Body fluids. Cell membrane receptors, second messenger systems. Connective tissue. Epithelia; absorption, secretion, mucosa, skin. Muscle; skeletal, cardiac, smooth. Neural structure and function. Intercellular communication; synaptic transmission, hormones, chemical messengers, trophism.

PHYS 2005 Circulation and Respiration
 Blood; structure and function. Organisation of the circulation. Heart as a pump.
 Structure and function of blood vessels. Capillary exchange.
 Structure of the respiratory system. Mechanics of breathing. Transport of gases in the blood.

- PHYS 2006 Digestion and Excretion Structure of the alimentary tract; movement, secretion, absorption. Functions of the liver. Kidneys; homeostatic functions, structure, blood vascular system. Glomerular filtration, tubular reabsorption and secretion. Investigation of renal function.
- PHYS 2007 Nervous and Endocrine Systems Structure of the nervous system. Sensation. Spinal reflexes and reflex arcs. Hormonal control of physiological function, metabolism, growth and reproduction.

Third Year Courses for General and Honours Degrees

PHYS 3002 Regulatory Mechanisms

Ion channels and membrane potential, mechanisms of action potential generation, receptors, second messengers and signal transduction, regulation of excitation-contraction coupling (skeletal, cardiac and smooth), mechanisms of synaptic transmission, gap junctions, transmembrane/cellular transport of solutes and water, secretion, homeostasis, control systems, feedback and feed forward control.

PHYS 3003 Circulation and Respiration

Cardiac electrophysiology. Regulation of myocardial contractile function. Arterial circulation; short- and long-term control of pressure. Microcirculation; Capillary exchange and regulation of tissue blood flow. Venous circulation. Respiratory mechanics; resistance and compliance. Blood gas transport. Pulmonary circulation and gas exchange. Introduction to the control of breathing. Fluid balance mechanisms.

PHYS 3004 Digestion, Absorption, Excretion

Alimentary canal; control of motility. Salivary, gastric, intestinal, pancreatic and biliary secretions. Digestion and absorption. Dietary factors, dietary disorders. Metabolic rate, energy balance, body temperature. Hormonal regulation of metabolism: insulin, glucagon, thyroid hormones, glucocorticoids. Control of growth. Renal circulation, glomerular filtration, tubular functions. Renal regulation of water and electrolyte balance.

- PHYS 3005 Neurophysiology I Central neurotransmitter release; mechanisms and modulation, sensory processing and tracts, muscle receptors and spinal reflexes, visual system, olfaction, gustation, hearing.
- PHYS 3006 *Cardiorespiratory Integration* Cardiovascular and respiratory systems; sensory receptors and efferent control mechanisms. Brain stem and supramedullary systems in cardiorespiratory control. Integrated cardiorespiratory responses to hypoxia, hypovolaemia, exercise, diving and altitude.

PHYS 3007 Neurophysiology II

Cortical control of movement, corticospinal tracts and extrapyramidal system, brain stem, basal ganglia, cerebellum, control of posture, learning and memory, cellular mechanisms and neurotransmitters, synaptic plasticity.

STAT 3221 Biostatistics

Honours students of Physiology must take this unit (details under Statistics) or an alternative appropriate unit approved by the Department of Physiology.

PHYS 3009 Physiological Measurement.

Signals and signal processing. Instrumentation; transducers, amplifiers, filters, recorders. Analogue-to-digital conversion. Computers and data analysis. Measurements of pressure, flow, volume, concentration and potential difference. Assay techniques and their limitations. Methods in microscopy, cell physiology, neurophysiology, cardiovascular physiology, respiratory physiology and biochemical physiology.

Fourth Year Course for Honours Degree – PHYS 4001

The course consists of a series of advanced lectures in selected topics reflecting the special interests of the staff in the Department which include: integrative aspects of cardiovascular control mechanisms in the central nervous system, interactive aspects of cardiovascular and respiratory control, regulation of upper airway patency in humans and animal models, the physiology of the gastrointestinal tract, electrophysiological recording in the central nervous system, patch clamp methodology, amino acid neurotransmission, motor control, renal physiology and electrolyte homeostasis, mechanisms of respiratory control at rest and during exercise, hypoxic pulmonary vasoconstriction in vitro and in vivo models, control of pulmonary blood flow distribution, role of the endothelium in modulating pulmonary vascular tone. Students are required to attend the regular Departmental Research Meetings. Each student must submit three review essays on an area of particular interest within Physiology. These essays are written under the guidance of a member of staff.

A supervised research project is carried out in a laboratory within the Department. The results of this are presented to the Department as a seminar and also submitted in minor thesis form as part of the final examination.

PLANT GENETIC ENGINEERING

Programme Director: Professor Matthew Harmey

Prerequisite: First Science Biology - group (a) preferred.

Second Year Courses for General and Honours Degrees

Any Second Science combination that includes Botany and Biochemistry.

Third Year Topical Degree Course

Eight core courses: BOTN 3005, BOTN 3006, BOTN 3007, BOTN 3008, BOTN 3010, GENE 3001, GENE 3002, GENE 3003.

Two optional units selected from: BOTN 3001, BOTN 3002, BOTN 3003, BOTN 3004, STAT 3221, LANG 3001, LANG 3002, LANG 3003, LANG 3004.

BOTN 3010 *Plant Development and Metabolism* Photoregulation, germination and growth. Primary and secondary metabolism and regulatory mechanisms.

Fourth Year Honours Courses

Each student must attend ten of the following courses and undertake a Research Project in consultation with the Course Director.

- BOTN 4003 *Evolution in Plant Populations* For details of this unit see under Botany.
- BOTN 4006 *Eukaryotic Genome* For details of this unit see under Botany.
- BOTN 4007 Organelle Biogenesis For details of this unit see under Botany.
- BOTN 4008 *Plant Pathogen Interactions* For details of this unit see under Botany.
- BOTN 4009 In Vitro Techniques For details of this unit see under Botany.
- BOTN 4011 Critiques of Scientific Papers For details of this unit see under Botany.
- BOTN 4013 Science and Society For details of this unit see under Botany.
- BOTN 4014 Developmental Plant Genetics For details of this unit see under Botany.

BOTN 4016 *Plant Transformation* Agrobacteria-mediated transformation, direct gene transfer, selection, screening, use of transgenics in modifying plant metabolism and development. Co-supression and anti-sense strategies.

BOTN 4017 *Plant Food Safety* Testing procedures for dietary compatibility of modified plant proteins, lectins, haemagglutinines. Consequences of alteration of enzyme activities in metabolic cassettes.

- BOTN 4018 *GMOs in the Environment* The release of GMOs and their consequences. Regulatory procedures.
- BOTN 4019 *Molecular Biology and Plant Breeding* RFLP, PAPD, microsatellite and repeated sequences in genotyping and haplotyping, varietal identification and pathogen detection. Transformation and genetic engineering in plant breeding. Identification of differentially expressed genes.
- CELB 4002 Immunobiology For details of this unit see under Cell and Molecular Biology.

PSYCHOLOGY

Second Year Courses for General and Honours Degree

- PSY 2201 *General Psychology* History of Psychology and biological foundations of behaviour.
- PSY 2202 Introductory Cognitive Psychology Information processing and visual and auditory perception.
- PSY 2203 *Developmental and Social Psychology* Introduction to developmental and social psychology.
- PSY 2204 Statistics/Psychology & Society

Notes for Students:

- Participation in tutorials and essay writing is an important feature of the course.

Third Year Courses for General and Honours Degree

 PSY 3201 Biopsychology Physiological psychology and psychopharmacology.
 PSY 3202 Personality & Philosophical Introduction to personality theory; Philosophical questions relevant to psychology.
 PSY 3203 Cognitive Psychology Perception and learning.

PSY 3204	Developmental Psychology Cognitive, language, social and emotional development.
PSY 3205	Social Psychology and Language Introduction to social psychology; psychology of language.
PSY 3206	<i>Psychology of Special Needs</i> Developmental disabilities and persons with exceptional needs: abnormal psychology.
PSY 3207	Psychological Statistics and Experimental Research Methods
PSY 3208	Design & Application of Research

Notes for Students:

- Students are required to attend tutorials and departmental seminars, and to submit essays.
- Practical work may also be required in certain courses.
- Up to 25% of the marks allocated to any unit may be awarded for practical work.
- It is strongly recommended that students taking individual third year courses will have taken PSY 2201 PSY 2204.
- Some courses may not be offered in a particular year.

Additional Third Year Course for Honours Degree

In addition to *all* of the above third year courses, Honours Psychology students are required to take the following course. (This course is *not available* to students taking individual units of Psychology).

Laboratory Practicals in Psychology

Honours Psychology students are required to attend two laboratory sessions per week. Laboratory work covers experimental techniques employed in psychological research and students are required to submit written reports of experimental work.

Fourth Year Honours Courses

(Available only to those students taking Honours Psychology. All Honours students take PSY 4201 – PSY 4215 inclusive and select *two* Optional Units from PSY 4216 – PSY 4224.)

Core Units:

PSY 4201	Neuropsychology
PSY 4202	Advanced Cognitive Psychology
PSY 4203	Social: Social Cognition
PSY 4204	Social: Group Theory and Processes
PSY 4205	Social: Constructivism and Gender
PSY 4206	Aspects of Self and Identity
PSY 4207	Applied Psychology & Work
PSY 4208	Language: Symbols to Societies

- PSY 4209 Perspectives on Development
- PSY 4210 Applied Developmental
- PSY 4211 Intelligence
- PSY 4212 Current Debates in Psychology
- PSY 4213 Philosophical Psychology
- PSY 4214 Advanced Stats/Computer Analysis
- PSY 4215 Research Project

Honours Psychology students are required to undertake a research project and to write a minor thesis under the direction of individual academic staff members for the degree examination. In addition, students are required to attend departmental research seminars and discussion groups.

Optional Units:

- PSY 4216 *History and Psychology*
- PSY 4217 Behavioural Paediatrics
- PSY 4218 Counselling and Psychotherapy
- PSY 4219 Psychology and Education
- PSY 4220 Reading
- PSY 4221 Comparative Psychology
- PSY 4222 Attachment Theory
- PSY 4223 Emotions and Mind
- PSY 4224 Organisational Psychology

Notes for Final Year Students:

- Students are required to attend tutorials and departmental seminars, and to submit essays.
- Practical work may also be required in certain courses.
- Up to 25% of the marks allocated to any unit may be awarded for practical work.
- Some courses may not be offered in a particular year.

STATISTICS

Second Year Courses

STAT 2201 Descriptive Statistics and Statistical Computing

Types of variables and data. Stem-and-leaf displays. Frequency distributions. Histograms. Samples and populations. Transforming data. Numerical summary measures. Summarising bivariate data. Introduction to statistical programming and MINITAB.

STAT 2202 Introduction to Probability and Statistical Inference

Probability concepts. Random variables and probability distributions. The binomial distribution. The normal distribution. Checking for normality. The

distribution of a sample mean. Point and interval estimation using a single sample. Hypotheses and test procedures. Errors in hypothesis testing. Tests for population means and proportions using a single sample. P-values.

STAT 2203 Statistical Inference and Goodness-of-fit

Tests and estimation procedures for a difference between two population means or proportions using two independent samples. Tests and estimation procedures for differences using paired data. Distribution free procedures. One- and two-way frequency tables. Hypothesis testing for proportions and independence. Testing the fit for a population model.

STAT 2204 Linear Regression and Analysis of Variance

The simple linear regression model. Inferences based on the estimated regression line. Inferences on the population correlation. Checking model adequacy. Single factor ANOVA. Multiple comparisons. Randomized block experiment. Two-factor ANOVA.

STAT 2205 Statistical Theory I: Probability

Probability Theory. Combinatorics. Random Variables: univariate, bivariate and multivariate. Moment Generating Functions. Functions of a random variable. Standard Probability Laws.

STAT 2206 Statistical Theory II: Statistical Inference

(a) Estimation Theory: Chebyshev Inequality. Law of Large Numbers. Central Limit Theorem. Methods of moments and maximum likelihood. Point estimation and interval estimation.

(b) Hypothesis Testing: Neyman Pearson Lemma. Likelihood ratio tests.

STAT 2207 Statistical Theory III: Bayesian Statistics and Stochastic Processes Bayesian statistical inference. Stochastic processes. Poisson processes. Birth and death processes. Branching processes.

STAT 2221 Introduction to Statistical Methods

Data reduction and representation. Probability distributions. Sampling. Confidence intervals. Hypothesis testing. Independent and paired samples. Sample size calculations. Design of experiments. Correlation. Linear regression.

Second Science students studying Statistics normally take units STAT 2201 - STAT 2204. Instead, the units STAT 2205, STAT 2206, STAT 2207 and STAT 2221 may be taken with the permission of the Department of Statistics.

The Second Year Statistics courses are not available to Third Year Science students.

Third Year Courses for General and Honours Degrees

STAT 3205 Statistical Theory I: Probability Probability Theory. Combinatorics. Random Variables: univariate, bivariate and multivariate. Moment generating functions. Functions of a random variable

multivariate. Moment generating functions. Functions of a random variable. Standard Probability Laws. This unit is not available to students who have taken STAT 2205.

STAT 3206 Statistical Theory II: Statistical Inference

(a) Estimation Theory: Chebyshev Inequality. Law of large numbers. Central Limit theorem. Methods of moments and maximum likelihood. Point estimation and interval estimation.
(b) Hypothesis testing: Neyman Pearson Lemma. Likelihood ratio tests.

This unit is not available to students who have taken STAT 2206.

- STAT 3207 Statistical Theory III: Bayesian Statistics and Stochastic Processes
 Bayesian statistical inference. Stochastic processes. Poisson processes. Birth and death processes. Branching processes.
 This unit is not available to students who have taken STAT 2207.
- STAT 3208 Statistical Methods I

Simple linear regression. Hypothesis testing and inferences concerning the regression equation. Polynomial and multiple regression. Regression diagnostics and transformations. Selecting the best regression model.

- STAT 3209 Statistical Methods II One- and two-way analysis of variance. Fixed random and mixed effect models. Contrasts. Interaction. Multiple comparison procedures. Introduction to experimental design. Nonparametric statistics. Introduction to generalized linear models.
- STAT 3210 Data Analysis and Statistical Software Data screening and cleaning. The SAS software package for data analysis.
- STAT 3216 Actuarial Statistics I Economics of Uncertainty. Risk Theory and Utility. Jensen's Inequality. Sums of Random Variables and Convolutions. Loss Distributions. Reinsurance. Risk Models. Mixtures of Random Variables and Mixtures of Distributions.
- STAT 3217 Actuarial Statistics II Ruin Theory. Lundberg's Inequality. Credibility Theory. No Claims Discounting. Applications in Insurance.

STAT 3218 Survey Sampling Elements of the sampling problem. Simple random sampling. Stratified random sampling. Radio estimation. Cluster sampling. Systematic sampling. Prerequisite: MATH 2104 or Second Science Statistics.

STAT 3219 *Quality Control and Reliability* Aims of quality control. Acceptance sampling. Operating characteristic curves. Sampling schemes. Sampling by variables. Control and Cusum charts. *Prerequisite: MATH 2104 or Second Science Statistics.*

STAT 3220 Statistics for Chemists

Probability. Basic distributions. Measures of precision. Sample size determination. Estimation of differences. Regression and calibration. Analysis of variance. Quality and process control. Introduction to statistical software.

STAT 3221 Biostatistics

Data reduction and representation. Probability distributions. Sampling. Confidence intervals. Hypothesis testing. Independent and paired samples. Sample size calculations. Design of experiments. Correlation. Linear regression.

- STAT 3222 Stochastic Processes I An introduction to the classification and simulation of stochastic processes. Discrete and continuous time models. Stochastic calculus
- STAT 3223 Official Statistics

Collection of official statistics including macro-economics, business, demographic and social statistics. Accessing official statistics and their applications. Estimation, imputation and seasonal adjustment.

STAT 3224 Statistics and Visualization

Descriptive statistical and graphical methods for displaying data. From data to information. Visualization and presentation of data. Aspects of multivariate analysis. Simulation. S-plus software.

Fourth Year Courses for Honours Degree

STAT 4211 Data Analysis I

STAT 4212 Applied Statistics I

Design and Analysis of Experiments. Complete Block Designs (Randomized Block and Latin Square Designs). Incomplete Block Designs. Factorial Designs. Confounding and Fractorial Factorial Designs. Statistical Software.

STAT 4213 Applied Statistics II

Introduction to Sample Surveys. Contingency Table Analysis. Logistic Regression. Log-linear Models. Statistical Computing.

STAT 4214 Time Series Analysis

Characteristics of time series. Autocorrelation and cross-correlation function. Stationary time series. Autoregressive and moving average processes. Nonstationary time series. Model specification and estimation. Model diagnostics. Forecasting. Special topics.

STAT 4215 Multivariate Analysis

Random vectors. Multivariate Normal Distribution, Correlation and Regression. Hotelling's T² Statistic. Discriminant Analysis. Canonical Correlation. Principal Components Analysis. Multivariate Analysis of Variance.

STAT 4216 Actuarial Statistics I Economics of Uncertainty. Risk Theory and Utility. Jensen's Inequality. Sums of Random Variables and Convolutions. Loss Distributions. Reinsurance. Risk Models. Mixtures of Random Variables and Mixtures of Distributions. This unit is not available to students who have taken STAT 3216.

STAT 4217 Actuarial Statistics II Ruin theory. Lundberg's Inequality. Credibility Theory. No Claims Discounting. Applications in Insurance.

This unit is not available to students who have taken STAT 3217.

STAT 4223 Official Statistics

Collection of official statistics including macro-economics, business, demographic and social statistics. Accessing official statistics and their applications. Estimation, imputation and seasonal adjustment.

STAT 4231 Linear Models with Complex Structure

Analysis of unbalanced data from surveys and experiments. Partitions of data in orthogonal designs. Means model. Estimation of variance components in unbalanced mixed and random effect models. Methods for the analysis of repeated measures data.

STAT 4232 Topics in Biostatistics

This course covers specialised applications of statistics in biology. Topics include the following: Pharmaceutical statistics, ecological statistics, medical and epidemiological statistics.

STAT 4233 Nonparametric Statistics

Distribution-free statistics; statistics utilizing counting and ranking; Wilcoxon statistics; Kruskal-Wallis statistic. Friedman statistic; Spearman's statistics; Permutation procedures; Power functions and asymptotic distribution. Nonparametric regression.

STAT 4234 Regression Theory

Simple and Multiple Linear Regression. Weighted Least Squares. Lack of Fit. F tests. Residuals and Influence. Model Building.

STAT 4235 Survival Analysis

Censoring. Life tables. Kaplan Meier estimate. Mantel-Haenzel statistics. Parametric methods. Cox's proportional hazards model. Goodness-of-Fit.

STAT 4236 Statistical Computing

Fixed point and floating point arithmetics. A review of programming style. Random number generators. Monte Carlo applications. A review of maximum likelihood. Unconstrained nonlinear optimizations. Accessing Fortran libraries.

STAT 4237 Stochastic Processes II

General principles of stochastic processes. Markov chains. Markov processes. Special topics in time series models. Gauss Wiener processes and levy processes. Monte Carlo simulation of stochastic processes. Stochastic actuarial modelling.

STAT 4238 Data Analysis II

THEORETICAL PHYSICS

First Year Courses

For details of First Year courses, see pages 34 to 38.

Second Year Courses

Students follow the Second Year Honours course in Mathematics and Second Year course in Experimental Physics. In Mathematical Physics students take the following Honours courses:

MAPH 2111 Methods A MAPH 2121 Mechanics A MAPH 2131 Mechanics B MAPH 3161 Quantum Mechanics

Third Year Courses

Students must take the Core Courses and one of the Optional Courses listed below.

Core Courses

MAPH 3111 Methods B MAPH 3121 Continuum Mechanics (Hons) MAPH 3171 Fluid Mechanics MAPH 4141 Quantum Mechanics MAPH 4181 Electromagnetic Theory EXPH 3006 Thermodynamics and Statistical Physics EXPH 3007 Solid State Physics EXPH 3012 Nuclear Physics

Optional Courses

MAPH 4111 Methods I MAPH 4121 Methods II MAPH 4151 Statistical Mechanics MAPH 4161 Computational Physics MAPH 4171 General Relativity EXPH 4002 Quantum Mechanics and Nuclear Physics

EXPH 4004 Atomic and Molecular Physics
EXPH 4005 High Energy Particle Physics
EXPH 4009 Perspectives in Modern Astrophysics
EXPH 4010 Atomic Structures and Spectra
EXPH 4011 Physics of Ionized Gases
EXPH 4013 Condensed Matter Physics
EXPH 4015 Experimental Laboratory Option

Fourth Year Courses

Students take the equivalent of 12 units. These are chosen from the courses listed below. The courses in Group A are equivalent to 1.5 units and the courses in Group B are equivalent to one unit.

MAPH 4111 Methods I
MAPH 4121 Methods II
MAPH 4131 Continuum Mechanics
MAPH 4151 Statistical Mechanics
MAPH 4161 Computational Physics
MAPH 4171 General Relativity
MAPH 4191 Theoretical Astrophysics

Group B

Group A

EXPH 4002 Quantum Mechanics and Nuclear Physics
EXPH 4004 Atomic and Molecular Physics
EXPH 4005 High Energy Particle Physics
EXPH 4009 Perspectives in Modern Astrophysics
EXPH 4010 Atomic Structures and Spectra
EXPH 4011 Physics of Ionized Gases
EXPH 4013 Condensed Matter Physics
EXPH 4015 Experimental Laboratory Option

Also, at most 1.5 units may be in a more advanced topic, which will normally be in one of the following areas.

Quantum Field Theory Quantum Gravity Advanced Mathematical Statistical Mechanics Advanced General Relativity Non-linear Waves Elasticity Advanced Theoretical Astrophysics

ZOOLOGY

Second Year Courses for General and Honours Degrees

ZOOL 2005 Animal Form and Function 1

Comparative anatomy and physiology of invertebrate and vertebrate systems (digestion; respiration/circulation; excretion/osmoregulation; reproduction). Enzymology and metabolism. Correlation between form and function. Adaptation to environment.

ZOOL 2006 Cell and Molecular Zoology

Topics covered include chromosome organisation and genome stability; mutation, repair and recombination; genetic linkage and chromosome mapping; gene expression and its regulation; protein targeting; cytoskeleton and extracellular matrix (ECM); cell-cell and cell-ECM interactions; cell-cycle regulation, apoptosis and cancer.

ZOOL 2007 Animal Ecology

Biotic and abiotic determinants and limiting factors in growth and control of animal populations/communities. Food webs, decomposition processes, nutrient cycling. Features, habitats and fauna of terrestrial, freshwater and marine ecosystems.

 ZOOL 2008 Invertebrate Diversity
 The Bauplan concept, constraints in body design and comparative biology of the following invertebrate phyla: Protista, Porifera, Cnidaria, Platyhelminthes, Nematoda, Annelida, Mollusca and Echinodermata. Species of economic and medical importance.

morphology of mammals; lactation; evolution of man; special topics.

Third Year Courses for General and Honours Degrees

- ZOOL 3001 Avian and Mammalian Biology Evolution and adaptive radiation of birds; feathers and flight; anatomy and biology of birds; homeothermy. Origin and evolution of mammals; functional
- ZOOL 3002 Animal Cell Biology

Biological membranes. Cytoskeleton. Extracellular matrix. Intercellular junctions. Assembly of cells into the basic tissue types. Targeting of transmembrane, secretory and lysosomal proteins, Endocytosis. Cell cycle. Cell death. Cancer. Techniques in cell biology (microscopy, antibodies, *in vitro* assays etc). Relevance of above topics to development, immunology and disease.

ZOOL 3003 Invertebrate Zoology II Arthropoda, echinodermata and lesser invertebrate phyla. Origin, classification, functional morphology and phylogenetic relationships of the arthropods including Chelicerata, Crustacea, Onycophora, Myriapoda and Insecta. Strategies for survival in insects; reproduction flight and defence mechanisms.

Applied entomology, insect pests and their control. Classification and morphology of the Lophophorates, Echinodermata and lower deuterostomes.

ZOOL 3004 Animal Behaviour

Measuring behaviour. Development of Behaviour Learning. Communication, Social Systems and Behaviour. Chemoreception with emphasis on pheromones. Biochemical and neural correlates of learning and memory.

ZOOL 3005 Animal Ecology II

The assembly of animal communities and nutrient cycling in terrestrial ecosystems. Reproduction and larval ecology in marine ecosystems. Biomechanics of marine animals. The ecology of aquatic insects. Successional changes in lakes and palaeolimnology. Fisheries, aquaculture and fish community ecology.

ZOOL 3006 Parasitology/Immunology

Population ecology and regulation of parasites: r and K selection; physiology of *Schistosoma* with reference to host location. Immunological aspects of parasitism; types of immunity; antigens; B and T cells; structure and function of immunoglobulins; antibody induction and production; antibody-antigen interactions; evasion of immune response by selected parasites.

ZOOL 3007 Animal Physiology II

Neurobiology and endocrinology; physiology of the sensory neuron; mechanism of vision; neurotransmitters; neuroreceptors; nervous integration; receptors; endocrine systems; mechanisms of hormone action; regulation of receptor expression.

ZOOL 3008 Evolution

Mechanism of speciation - allopatric and sympatric. Niche Theory, character displacement, convergent evolution of species and communities. Plant-insect coevolution. Hardy-Weinberg Law. Mutation. Selection. Heritability. Gene flow. Phylogenetic trees and the estimation of genetic relatedness. Molecular evolution, e.g. neutral theory.

GENE 3001 Genetics is part of the Zoology course.

Fourth Year Course for Honours Degree - ZOOL 4000

Students must attend seven units. There are four core units and three optional. Each student undertakes a research project which is written and presented as a thesis. In addition, attendance at Research Seminars is obligatory.

ZOOL 4001 Biodiversity

Evolution and maintenance of biodiversity within systems. Equilibrial and nonequilibrial models of community organisation. Global patterns of species diversity. Functional redundancy. The Irish fauna.

ZOOL 4002 Developmental Biology

Fertilization, cleavage and the subsequent development of the blastula, gastrula and neurula are described. Mechanisms of development are examined at the cytoplasmic, genetic and cell surface levels. The molecular control of development is explained using animal models such as C. elegans and Drosophila.

ZOOL 4003 Contemporary Taxonomy

The importance of taxonomy is discussed. Definitions of taxa and species are provided and the use of morphology, immunotaxonomy, biochemical markers, mathematical analysis and paleontology in defining and recognising phylogenetic relationships between species is described.

ZOOL 4004 Immunology

This course builds on material discussed in Third Year. Complement, T cell maturation, antigen processing and T cell activation are discussed and topics such as the evolution of the immune response, immunity to viruses and bacteria, mucosal immunity and the generation of diversity in the immune response are introduced.

ZOOL 4005 Ecology of Tropical Rainforests

The paradox of tropical luxuriance: climate, soil, vegetation and nutrient cycling. Biodiversity in tropical forests. Rainforests as a vanishing resource with emphasis on ethnopharmacology. Accounts of expeditions to West Central Africa and Amazonia. Models for sustainable use.

ZOOL 4006 Animals and Genes

Provides a basic understanding of genome structure, the nature of polymorphism and its application in genome mapping and identification of individuals and the principles of gene expression. Specific topics include gene families, introns, gene evolution, genome instability, regulation of gene expression.

ZOOL 4007 Wildlife Management

The logic and management of conservation. Discussion of the roles of parks, reserves and zoos, including discussions of minimal viable populations etc. International aspects of conservation and the control of trade in wildlife.

ZOOL 4008 Comparative Physiology

The nature of physiological adaptation to the environment with particular reference to the principle of homeostasis. Systems to be considered include osmoregulation, respiration, nutrition and energy metabolism.

ZOOL 4009 Parasitology

Deals with classical aspects of parasitology. The biology, pathology, diagnosis and treatment of a number of parasitic infections, in humans and other animals

are described. The parasites include protozoan and helminth endoparasites and ectoparasites.

ZOOL 4010 Environmental Impact Assessment

Definition of Environmental Impact Assessment and a discussion of the Irish and EU legislation associated with environmental issues. Case studies are used to illustrate the sequence of work and practical considerations necessary in preparing such statements.

ZOOL 4011 Readings in Contemporary Zoology

This is a literature-based course, in which the students select from a number of topics (9) which they study themselves (i.e. no lectures). Each staff member contributes a topic to the list and recommends a key text.

ZOOL 4012 General Zoology

This is the coding for the three hour paper on general zoology in the final examination.

ZOOL 4013 Fisheries Science

Course will include: Van Bertalannfy growth equations, sustainable yields in marine fisheries, total and natural mortality in fish stocks, recruitment mechanisms, catch-effort statistics, fecundity and use of otoliths as an ageing tool.

ZOOL 4014 Prion Diseases

This course examines the current research into the agents responsible for the animal and human Transmissible Spongiform Encephalopathies. It includes the nature of the agent, its genetics, cell biology and epidemiology.

ZOOL 4015 Marine Ecology

Oceanography via remote sensing. The ecology of corals and fishes on coral reefs. The unusual biology and ecology of deep-sea animals. The unexpected impacts of humans in the marine environment. The ecology of polar environments.

BSc DEGREE IN OCCUPATIONAL SAFETY AND HEALTH

Students who pass Second Science in any combination of subjects may apply for admission to this Degree course.

Applications to this Third Year Degree course should be made to the Course Director (see page 13) before 20 April 2001.

Admission is granted by the Course Director and is subject to space and number restrictions.

Third Year Courses

These courses are only available to students taking the BSc in Occupational Safety and Health. Students take all ten courses.

SHWW 3001 Safety and Health Legislation

This unit provides the opportunity for understanding the important developments in legislation relating to safety and health in the workplace at both Irish and European levels.

SHWW 3002 Risk Management and Safety Technology

All aspects of occupational risk are considered and how they can be managed like any other workplace activity, to eradicate or reduce the adverse effects of accidents and occupational disease in the workplace. The structure and content of Safety Statements are examined in detail.

SHWW 3003 Occupational Health and Health Promotion

A broad definition of occupational health is introduced covering the most common occupational diseases and their prevention. Health promotion in the workplace is explored. The organisation of occupational health services, first aid, disability and rehabilitation are other issues which are addressed.

SHWW 3004 Occupational Hygiene

Occupational hygiene is concerned with the recognition, evaluation and control of physical (e.g. noise) and chemical (e.g. gases) agents in the workplace. Basic monitoring equipment is demonstrated practically.

SHWW 3005 Chemical Safety and Toxicology

Chemical actions and interactions in the human body and the toxic effects of major classes of toxicants are examined. The principles of chemical hazards and risk assessment are addressed and appropriate control and preventative strategies for toxic chemicals.

SHWW 3006 Ergonomics and Behavioural Science

Human attitudes and behaviour are examined in relation to safety and health and how this knowledge can be applied to improve the workplace environment and motivate safe working practices. It gives an appreciation of the complexity of dealing with individuals, in groups and in organisations.

SHWW 3007 Emergency Planning

The unit concentrates on emergency planning and evacuation procedures for possible workplace disasters. It also considers Fire and Electricity in depth, as two of the major potential "killers" in most working environments.

SHWW 3008 Epidemiology and Statistics

An overview of the epidemiological approach to the monitoring of health in the workplace is given. Data collection methods, the choice of an appropriate study design, the interpretation and use of medical statistics and the role of computers in the research process are examined.

SHWW 3009 Industrial Placement SHWW 3010 Projects

BSc DEGREE IN OCCUPATIONAL SAFETY AND HEALTH MANAGEMENT (PART TIME DEGREE)

- 1. Applicants to this part time BSc degree course must have completed and achieved a high standard in the NUID Diploma in Safety, Health and Welfare at Work or equivalent. Applicants should also have at least two years' relevant work experience.
- 2. A limited number of places are available on the course. Applications should be made to: Assistant to the Academic Director, Centre for Safety and Health at Work, University Industry Programme, UCD, Roebuck, Belfield, Dublin 4. Closing date for receipt of applications: 30 June each year.
- 3. The degree course is a part time course and will normally be completed in two years.
- 4. The foundation unit, SHWW 3201 Research Methods, Data Processing and Analysis, is offered each year. This unit is compulsory for students in the first year of the programme. Thereafter each core and elective unit is offered once every second year to both first and second year students who attend lectures together.
- 5. Project work is based on individual work placements in industry (which may be in the students's own workplace), which takes place over both first and second years of the degree programme.
- 6. Examinations will be held each year in Summer with repeat examinations in Autumn.

Core Units

SHWW 3201 Research Methods, Data Processing and Analysis

Introduction to programme, its objectives and knowledge and skills needed to carry out workplace placement and research project. Builds on and adds to Epidemiology and Statistics in the Diploma course. Use of software packages for data analysis, and report/thesis writing skills.

SHWW 3202 Risk Management

Advanced risk management techniques relating to management of safety and health in the workplace, including cost benefit analysis, claims investigation and analysis, practical legal issues that relate to risk management and stages of litigation process.

SHWW 3203 Applied Management for Occupational Safety and Health

Practical management skills, communication skills, strategic planning and project management. Relevant industrial relations and human resource issues relating to occupational safety and health in organisations. Builds on Ergonomics and Behavioural Science and Safety and Health Legislation in the Diploma course.

SHWW 3204 Occupational Safety and Health and Environmental Management

Legislative and practical links between management of occupational safety and health and management of workplace environmental issues. Addresses needs of occupational safety and health professionals whose brief includes environmental issues. Explores roles of organisations involved in managing health and safety and the environment.

SHWW 3205 Safety Management and Quality Auditing

Quality Auditing and Standard Setting: how these principles can be applied to Occupational Safety and Health Management. Existing standards, contemporary trends and legislative requirements. Safety Management Systems are addressed in detail.

Elective Units

Students must choose one of the following units:

SHWW 3206 Occupational Hygiene - the Working Environment

Occupational Hygiene practice, including personal and environmental monitoring in workplace. Builds on Occupational Hygiene in the Diploma course.

SHWW 3207 Occupational Health

Issues that relate to occupational health practice; skills required to run an occupational health department; legislation; the occupational health professional as part of multidisciplinary team; models of occupational health and occupational health nursing; and contemporary issues in occupational health practice.

SHWW 3208 Ergonomics

Ergonomic issues in contemporary work setting: the person, the environment, the equipment and the job. Legislation; the ergonomist as part of multidisciplinary team; ergonomic assessment; job and task analysis; analytical tools; and contemporary issues in workplace ergonomics.

PHAR 3004 Toxicology

For details of this unit see under Pharmacology.

BSc HONOURS DEGREE IN MEDICAL SUBJECTS FOR MEDICAL STUDENTS OR GRADUATES

- 1. The Degree of BSc with Honours in Medical subjects may be conferred in any one of the following subjects: (*a*) Anatomy, (*b*) Biochemistry, (*c*) Medical Microbiology, (*d*) Pathology, (*e*) Pharmacology, (*f*) Physiology.
- 2. Students who have passed the appropriate University examination in Medicine in the corresponding subjects at a standard of at least Second Class Honours are eligible to take the BSc Degree in that subject. To be eligible to pursue the Degree of BSc in

Anatomy or Biochemistry, students must have passed the University Examination of the Second Year of Medicine with Honours and must also have passed the University Examination of the Third Year of Medicine.

- 3. Candidates who hold the Degrees of MB, BCh and BAO may be recommended by the Faculty of Science for admittance to the Honours Degree courses in any one of the subjects (a) to (f).
- 4. For admission to the Honours Degree Examination in subjects (a) to (f), candidates must have attended the prescribed courses for at least one academic year.
- 5. Particulars of the prescribed courses are given in the booklet for the Faculty of Medicine. At the discretion of the Professors concerned, special instruction in related subjects may be arranged.

POSTGRADUATE PROGRAMMES

The following postgraduate programmes are offered in the Faculty of Science:

DEGREE OF DOCTOR OF PHILOSOPHY (PhD)

• by research and thesis

DEGREE OF MASTER OF SCIENCE (MSc)

- by Mode I (research and thesis)
- by Mode II (course and examination)
- by Mode III (external study and research)

DEGREE OF MASTER OF APPLIED SCIENCE (MApplSc)

• by course and examination

HIGHER DIPLOMA DIPLOMA CERTIFICATE

ADMISSION AND ENTRY REQUIREMENTS FOR PhD DEGREE

Candidates are required to have reached a high Honours standard at the examination for the primary degree or equivalent before they can be allowed to enter a course of study and research for the Degree of PhD.

Candidates for this degree are required to be admitted by the Faculty on the recommendation of the Professor; their admission must then be confirmed by the Academic Council.

The degree is normally (except in Science) to be taken six terms after the Master's Degree, but in special cases candidates may be permitted to take it six terms after the primary degree. In the Faculty of Science, six terms after the BSc Degree is the minimum period.

This degree will not be awarded unless the examiners report that the work is worthy of publication as a whole or in part.

Candidates for PhD Degrees will be allowed six years from the date of registration in which to complete their degree. If they have not done so within that period, they must re-apply to Faculty for registration.

ADMISSION AND ENTRY REQUIREMENTS FOR MSc AND MAppISc DEGREES

- 1. Application for admission to the MSc Degree programmes should be made to the Head of the relevant department.
- **2.** Application for admission to the MApplSc Degree programmes should be made to the Director of the relevant programme.
- **3.** Candidates for the MSc Degree and MApplSc Degree must have the permission of the Faculty and the Department concerned to enter a course. Except by permission of the Faculty, they cannot at the same time engage in any other course.
- **4.** Only those candidates who have obtained at least a Second Class Honours primary degree, or equivalent, will be permitted to proceed directly to an MSc Degree by Modes I, II or III or an MApplSc Degree.
- 5. Candidates who hold a Third Class Honours primary degree, the BSc General Degree with Distinction, or the BSc General Degree followed by two years' approved postgraduate experience, may be admitted to the MSc by Mode I on the recommendation of the Faculty and the Department concerned. Such candidates would normally be required to pass a qualifying examination during their first year and attend the College for at least six terms.
- 6. The MSc Degree (Mode I) by thesis is an Honours degree. Candidates must attend for at least three terms and carry out research, under the direction of the Professor or Lecturer, in the subject concerned. The thesis presented by the candidate is to embody the results of this research. Candidates may be required to pass an examination in the subject-matter of the thesis if the Examiners so decide. Three copies of the thesis must be lodged with the Supervisor of Examinations, University College Dublin, on or before the date fixed by the University.
- 7. The Degree of Master of Science (MSc) may be awarded in any one of the following subjects: Anatomy, Biochemistry, Botany, Chemistry, Computer Science, Experimental Physics, Geology, Industrial Microbiology, Mathematical Physics, Mathematical Science, Mathematics, Medical Microbiology, Pathology, Pharmacology, Physiology, Psychology, Statistics, Zoology.
- **8.** Students who pass the Higher Diploma in Mathematical Science with distinction may be admitted to the MSc Degree course in Mathematical Physics or Mathematics.
- **9.** Students who pass the Diploma in Statistics (see Arts Faculty regulations) with distinction may be admitted to the MSc Degree in Statistics.
- **10.** The MSc Degree (Modes II and III) by examination and the MApplSc Degree may be awarded with First or Second Class Honours. (The regulations governing these

examinations are contained in *Marks and Standards*, available for consultation in the Library).

Candidates must attend a postgraduate course for three terms. An examination will be held in the subject-matter of the course selected. Candidates may be required to submit a dissertation on a project undertaken as part of their course and this dissertation will be taken into account by the Examiners in making their recommendations.

Courses leading to the MSc Degree are offered in the Departments of Botany, Computer Science, Mathematics, Mathematical Physics, Psychology and Statistics.

- 11. MSc by External Study and Research (Mode III) Candidates will be required to present themselves for an examination, theoretical and practical, involving detailed and critical knowledge of the principal branches of the subject concerned. Candidates must also present a satisfactory dissertation embodying the results of original research. Candidates will also be examined on the subject-matter of the dissertation and on cognate subjects. Candidates must normally have obtained First or Second Class Honours in the BSc Degree examination and must be graduates of at least six terms standing. Other candidates may be admitted by the Faculty on the recommendation of the Department concerned.
- **12.** Candidates for the MSc Degree (Mode 1 Research) will be allowed a maximum of four years from the date of registration in which to complete their degree. If they have not done so within that period, they must reapply to Faculty for registration.
- **13.** Candidates for the MSc Degrees (Modes II and III Examinations) and MApplSc will be allowed a maximum of three years from the date of registration in which to complete their degree. If they have not done so within that time period, they must reapply to Faculty for registration.

COURSE DETAILS FOR TAUGHT MSc DEGREES (MODE II)

DEGREE OF MASTER OF SCIENCE IN PLANT MOLECULAR BIOLOGY

Advanced theoretical and practical training in a wide range of modern techniques in molecular biology as applied to Plant Science is provided in a one year full-time course. There is a strong emphasis on laboratory-based training to complement the theoretical aspects of molecular biology. A practical research project forms an essential part of the year's program.

Candidates should possess an honours degree in a biological subject, a BSc General with Distinction or equivalent by practical experience. An Examination will be held in the subject matter of the course; marks will also be awarded for the year's practical and for the research project. Candidates must pass separately the written papers, the year's practical work and the minor thesis.

DEGREE OF MASTER OF SCIENCE IN COGNITIVE SCIENCE

Cognitive Science is an interdisciplinary enterprise, the primary goal of which is to integrate the efforts of academic disciplines concerned with the main facets of human cognition. The course will comprise three main content areas: sensory-motor processes, cognition, and language. After an initial grounding in the first semester in these three strands, as well as in various research and modelling methodologies, the course will focus on specific computational models in the various topic domains. Students will specialise in one of the three strands in their choice of a project.

DEGREE OF MASTER OF SCIENCE IN RADIOLOGICAL SCIENCES

Advanced academic, practical and radiological training in all branches of diagnostic imaging is provided by a one year, full-time course in collaboration with the Institute of Radiological Sciences at the Mater Misericordiae Hospital and the Diagnostic Imaging and Nuclear Medicine Departments at St. Vincent's Hospital.

Candidates should be graduates in medicine who have passed their fellowship examination in Radiology or equivalent (i.e. MD in Radiology) and actively engaged in diagnostic radiology.

DEGREE OF MASTER OF SCIENCE IN COMPUTATION AND VISUALISATION FOR MOLECULAR SCIENCES

Advanced theoretical and practical training in the application of modern computing techniques to the molecular sciences is provided by a one year, full-time course. The use of high performance computing including, particularly, the use of parallel techniques for molecular modelling, visualisation and informatics will be covered. In addition, the course addresses the development of multimedia applications. There is a strong emphasis on laboratory-based training to complement the theoretical aspects of chemistry and biochemistry. Projects form an essential part of the year's program and students take part in a placement scheme over a three month period.

Candidates should possess an honours degree at the First Class or Upper Second Class Honours level in a molecular science (chemistry, biochemistry, pharmacology, genetics) or computer science. An examination will be held in each of the six units including continuous assessment of practical classes. Marks will also be awarded for two projects and the assessment of placement.

COURSE DETAILS FOR MAppISc DEGREES

Courses leading to the Degree of Master of Applied Science are offered in the following areas:

Applied Physics:

A two-year, part-time course open to graduates in Science and Engineering.

Computer Science:

This is a one year, full-time taught Master's course open to those who have achieved a good Second Class Honours in the Higher Diploma in Computer Science or equivalent and to suitably qualified Science graduates. The course has been designed with a specific emphasis on practical applications of relevance to the internet and e-commerce sector. The course will comprise six modules as prescribed by the Department of Computer Science. Students will be required to undertake a substantial project to be written up as a thesis to be submitted by the end of the academic year.

Environmental Science:

A one-year, full-time course open to graduates in Science, Engineering and Architecture.

Food Science:

A two-year, part-time course open to graduates in Science, Agriculture, Engineering, Veterinary Medicine, Commerce and Medicine.

Safety, Health and Welfare at Work:

The course is open to graduates who achieve a high standard in the Diploma in Safety, Health and Welfare at Work. It can be taken on a one year, full-time basis or on a two year, part-time basis.

The entry requirements for Science graduates will be the same as for the MSc. Suitably qualified graduates of other faculties and universities will be admitted on the recommendation of the Faculty. Candidates must attend the prescribed course of lectures and practicals. An examination will be held in the subject-matter of the course selected. Candidates may be required to submit a dissertation on a project undertaken as part of their course and this dissertation will be taken into account by the Examiners in making their recommendation.

COURSE DETAILS FOR HIGHER DIPLOMAS, DIPLOMAS AND COLLEGE CERTIFICATES

Candidates for the Higher Diploma in the Faculty of Science will be allowed a maximum of two years from the date of registration in which to complete their diploma. If they have not done so within that period, they must reapply to Faculty for registration.

HIGHER DIPLOMA IN COMPUTER SCIENCE

The diploma course is full-time for one year and the course content consists of subject matter from the honours degree course in Computer Science. Admission will normally be restricted to graduates of disciplines other than Computer Science. The course is designed to give graduates of other disciplines a sound theoretical foundation and practical exposure to Computer Science.

HIGHER DIPLOMA IN COMPUTATIONAL METHODS AND NUMERICAL SOFTWARE

This one year, full-time diploma course is open to graduates with a suitable level of previous experience (e.g. BSc, BE or BA involving quantitative course work). Entry to the course is restricted to graduates who obtain the permission of the Course Directors in the Departments of Mathematical Physics and Computer Science.

HIGHER DIPLOMA IN MATHEMATICAL SCIENCE (HDipMaSc)

The diploma course is full-time for one year and the course content consists of subject matter from the honours degree course in either Mathematics or Mathematical Physics. There will be a Mathematics stream and a Mathematical Physics stream.

Entry to the course is restricted to graduates who obtain the permission of the Head of the Department of Mathematics or of Mathematical Physics, as appropriate. Permission will normally be given to university graduates who have attained a sufficiently high standard in Mathematics or Mathematical Physics.

The examination may be taken once only and must be taken in the academic year of registration. (Exceptions to this rule may be granted by the Faculty but only for grave reasons). Students who pass with distinction will qualify for admission to the MSc course in Mathematical Science, Mathematics or Mathematical Physics.

A student's choice of options must be approved by the departments concerned.

Mathematics Stream

- Part I 1. Algebra
 - 2. Analysis

Part II 3. Algebra

Real and Complex Analysis

Mathematical Physics Stream
Part I Students take four courses from MAPH 3111- MAPH 31321 and MAPH 3161-MAPH 3181.
Part II Students take four courses from MAPH 4111 - MAPH 4191.

HIGHER DIPLOMA IN STATISTICS

The diploma course is full-time for one year and the course content consists of subject matter from the honours degree course in Statistics. Permission will normally be given to BA, BSc and BE graduates who have attained a sufficiently high standard in a subject area which is cognate to Statistics.

DIPLOMA IN SAFETY, HEALTH AND WELFARE AT WORK

This is a two-year, part-time course intended for persons with a professional interest in safety and health in the workplace. It comprises the following modules:

Safety and Health Legislation Risk Management and Safety Technology Occupational Health and Health Promotion Occupational Hygiene Chemical Safety and Toxicology Ergonomics and Behavioural Science Emergency Planning Epidemiology and Statistics

Admission to the course is not restricted to graduates. Preference is given to applicants with relevant experience.

CERTIFICATE IN SAFETY AND HEALTH AT WORK

This one-year, part-time course provides an introduction to all aspects of occupational safety and health; theoretical and scientific aspects are introduced as well as practical applications of risk management and hazard control. The course is designed as an extra-mural course which can be offered at UCD and/or other centres throughout Ireland. Candidates would normally be required to have Leaving Certificate or equivalent. Further information can be obtained from the Centre for Safety and Health at Work, Roebuck Castle, Belfield (Telephone No: 706 8712).

DEGREE OF DOCTOR OF SCIENCE (DSc)*

This degree may be awarded on original published work, to be submitted not less than fifteen terms after obtaining the primary degree.

Degrees which may be granted under the provisions of University Statute LXXXVI, Chapter LV, to students who shall have carried on independent research:

The Degrees of the Faculty of Science, which are here included, are the Degree of MSc and the Degree of DSc.

* See Calendar of the National University of Ireland.

SCHOLARSHIPS AND PRIZES AWARDED IN FACULTY OF SCIENCE

SCHOLARSHIPS

Entrance Scholarships - based on Leaving Certificate

The University offers a number of entrance scholarships, valued at $\pounds 1,000$ for one year, on the basis of points achieved at the Leaving Certificate examination. All new entrants to Science who achieve a CAO points total on or above 550 points, will be guaranteed a scholarship. In addition, all Entrance Scholars will be given priority in the application for places in student residences on the Belfield Campus.

Scholarships on the Results of the First University Examination in Science

One scholarship, of value £500, may be awarded in each of the subjects: Biology, Chemistry, Computer Science, Experimental Physics and Geology. One scholarship will be awarded jointly with results in the Faculty of Arts in Honours Mathematics and in Honours Mathematical Physics. These scholarships are awarded to students gaining first place in their class and obtaining a First Class Honours mark.

Scholarships on the Results of the Second University Examination in Science

One scholarship, of value £500, may be awarded in each subject of the Second University Examination in Science which leads to an Honours Degree. These scholarships are awarded to students gaining first place in their class and obtaining a First Class Honours mark.

Scholarships on the Results of the Third University Examination (Honours) in Science

A total of not more than ten scholarships, of value £500, will be offered on the marks obtained at the Third University Examination in Science in the major subject or in a Topical Degree course. These scholarships are awarded to students gaining first place in their class and obtaining a First Class Honours mark.

Scholarship on the Results of the Third University Examination (Honours) in Science in the Joint Honours Degree Courses

One scholarship, of value £500, will be awarded. These scholarships are awarded to students gaining first place in their class and obtaining a First Class Honours mark.

Open Scholarship in Science

One second year or one third year or one fourth year scholarship, of value £500, may be awarded in special circumstances to a student of Science who is ineligible for a normal award.

Research Demonstratorships

Research Demonstratorships may be awarded to UCD students registered for postgraduate degree programmes in the Faculty of Science.

Up to six Research Demonstratorships may be awarded to graduates of other universities on a competitive basis.

Open Postgraduate Scholarships

The scholarships are awarded on the basis of academic merit and are available equally to graduates of University College Dublin and other universities. They are tenable for one year of full-time postgraduate study at University College Dublin. Application forms are available from the Office of Postgraduate Studies, University College Dublin, Library Building, Belfield, Dublin 4.

PRIZES

Biochemistry	-	ALLTECH Travel Award
	-	Michael G. Harrington Medal
Chemistry	-	Eva Philbin Medal
	-	Hugh Ryan Memorial Medal
Computer Science	-	John Kelly Memorial Medal
Experimental Physics	-	Thomas E. Nevin Medal and Prize
Geology	-	Patrick J. O'Donoghue Prize
Mathematics	-	Andersen Consulting Prizes
Mathematical Physics	-	Conway Medal
	-	Keating Prizes
	-	McCrea Medal
	-	Orr Prize
	-	Fr Ciaran Ryan Prize
Pharmacology	-	ICI Pharmaceuticals Division Prize

Full details of all above-mentioned scholarships can be found in the booklet Student Awards.

124

EUROPEAN CREDIT TRANSFER SYSTEM (ECTS)

CREDIT SCHEME FOR THE UNDERGRADUATE DEGREE PROGRAMME IN SCIENCE FOR VISITING STUDENTS FROM EUROPEAN UNIVERSITIES

YEAR	SUBJECTS	UNIT COURSES	CREDITS	TOTAL PER YEAR
First Science	4	-	15 per subject	60 credits
Second Science	3	12	5 per unit	60 credits
Third Science	*	10	6 per unit	60 credits
Fourth Science	*	-	60 per year	60 credits

* See regulations for Single Honours, Joint Honours, Topical, One-Subject General and Two-Subject General Degrees for number of subjects involved.

FIRST SCIENCE TIMETABLE (2000-2001)

	1	MONDAY			TUESDAY		WE	DNESDAY	(ТН	URSDAY		FRIDAY			
	Lectures	Loc.	Practicals	Lectures	Loc.	Practicals	Lectures	Loc.	Practicals	Lectures	Loc.	Practicals	Lectures	Loc.	Practicals	
09.00	Chemistry	Th A		Maths (Pass) Maths(Hons)	Th A/D Th E		Chemistry	Th A		Maths (Pass) Maths (Hons)	Th A/D Th F		Chemistry	Th A		
10.00	Exp. Physics	Th A		COMP 1001	Th A		Exp.Phys.	Th A		COMP 1002 Geology	L123 Th D		ExpPhysics	Th A		
11.00	MathPhys	Th E		Biology MathsPhys	Th A Th E		Maths (Pass)	Th A/B		Biology MathPhysics	Th A Th E		COMP 1002 Geology	L123 Th D		
12.00	Maths(Pass) Maths (Hons)	Th A/B Th D		COMP 1002 Geology	L123 Th D		COMP 1001	Th A		COMP 1001	Th A		Biology MathPhysics	Th A Th E		
13.00													Maths (Hons)	Th E		
14.00			CompSc ExpPhys Geology			Comp Sc ExpPhys			Biology Comp Sc			Biology Comp Sc			CompSc	
14.30			Chem			Chem			Chem			Chem			Chem	
16.00			Geology			ExpPhys			Comp Sc			Comp Sc			1	

(Lectures and Practicals)

NOTE: Practical classes are held in the relevant Department. Allocation of students to practical classes and tutorials will be made by individual Departments.

SECOND SCIENCE TIMETABLE (2000-2001) – FIRST SEMESTER

(Lectures and Practicals)

Time	N	IONDAY	(TU	ESDAY		W	EDNESDA	Y	TI	HURSDAY	[FRIDAY			
	Lectures	Loc.	Practicals	Lectures	Loc.	Practicals	Lectures	Loc.	Practicals	Lectures	Loc.	Practicals	Lectures	Loc.	Practicals	
09.00	MATH 2201	Th C		CHEM 2001	Th C		Ind.Micro.	Th D		CHEM 2002	Th C		Ind. Micro	Th D		
							PHYS 2004/6	L124		PSY 2201	L124		EXPH 2003	ID		
10.00	BOTN 2002	Th D	Chemistry	CHEM 2001/2	Th E		EXPH 2001	ID	Biochem.	EXPH 2003	ID	Biochem.	COMP 2002	Th C		
			(10-1 pm)	MATH 2103	Arts		ZOOL 2006	Th E	(10-1 pm)	ZOOL 2006	Th E	(10-1 pm)	PHYS 2004/6	L124		
			Pharmacol.						Chem.			Zool 2006	STAT 2221	Th D		
11.00	STAT 2201/2	Th A	(10-1 pm)	BIOC.2001/2	Th D		STAT 2201/2	Th E	(10-1 pm)	MATH 2201	Th D	(11-1 pm)	BOTN 2002	Th F		
			Botany	GEOL 2001	ID		STAT 2221	Th F	Zool 2006				MAPH.2031	Th C		
			(11-1 pm)	PSY 2203	L124				(11-1 pm)				MAPH 2121	L124		
12.00	EXPH 2001	ID	1	BOTN 2001	Th B	1	MATH 2101			COMP 2002	Th E	-	PHAR 2001/2	Th E		
12.00	EXPH 2001	ID		MAPH.2001			MATH 2101	Arts			Th D		GEOL 2002 PSY 2201	ID L124		
				MAPH.2031 MAPH 2111	L104 L124					PHAR 2001/2	InD		BIOC 2001/2	Th B		
				PHAR 2001/2	Th F								BIOC 2001/2	IIID		
13.00	STAT 2201/2	Th A		MAPH 2011	L104		STAT 2201/2	Th E		MATH 2202	Th B		MATH 2202	Th D		
15.00	BIOC 2001/2	Th B		MAPH 2121	L124		51111 2201/2	11112		101111112202	111 D		101111112202	11110		
	5100 2001/2			ZOOL 2005	ThE											
14.00	MAPH 2011	L124		GEOL 2002	ID		BIOC 2001/2	Th D		Ind. Micro.	Th E		CHEM 2001/2	Th B		
	MAPH 2111	L123		Ind. Micro.	Th E		GEOL 2001	ID		PHYS 2004/6	ET		STAT 2205/6	Arts		
	MATH 2103	Arts		PSY 2204	L124											
	ZOOL 2005	Th E														
15.00	COMP 2001	Th E	C.Science			C.Science	STAT 2205/6	Arts	C.Science	MATH 2101	Arts	Ind. Micro.	BOTN 2001	Th D	Chemistry	
			(3-5 pm)			(3-5 pm)			(3-5 pm)			(3-5.30 pm)			(3-6 pm)	
			Physiology			Geology			Geology			Biochem.			Pharmacol.	
			(3-5.30 pm)			(3-5 pm)			(3-5 pm)			(3-6 pm)			(3-6 pm)	
16.00			Chemistry	STAT 2005/6	Arts	Ind.Micro.			Biochem.	COMP 2001	Th D	Chemistry			Botany	
			(3-6 pm)			(3-5.30 pm)			(3-6 pm)			(3-6 pm)			(4-6 pm)	
			Zool 2005			Pharmacol.			Chemistry			Exp.Phys.				
			(4-6 pm)			(3-6 pm)			(3-6 pm)			(3-6 pm)				
]							Exp.Phys.			Physiology				
									(3-6 pm)			(3-5 pm)				
]							Pharmacol.							
									(3-6 pm)							

NOTE: Practical classes are held in the relevant Department; ID = Lecture held in relevant Department; ET = Lecture held in Earlsfort Terrace; Arts = Lecture held in Arts Building. Allocation of students to practical classes will be made by the relevant Department.

SECOND SCIENCE TIMETABLE (2000-2001) – SECOND SEMESTER

							(Lectures and Practicals)													
Time		MONDAY		TUI	ESDAY		W	EDNESDAY		TH	IURSDAY]	FRIDAY						
	Lectures	Loc.	Practicals	Lectures	Loc.	Practicals	Lectures	Loc.	Practicals	Lectures	Loc.	Practicals	Lectures	Loc.	Practicals					
09.00	MATH 2203	Th C		CHEM 2003	Th C		COMP 2004	Th F		CHEM 2004	Th C		Ind. Micro	Th D						
							Ind.Micro.	Th D		PSY 2202	L124		EXPH 2004	ID						
							PHYS 2005/7	L124												
10.00	BOTN 2003	Th D	Chemistry	CHEM 2003/4	Th E		EXPH 2004	ID	Biochem.	EXPH 2002	ID	Biochem.	PHYS 2005/7	L124						
			(10-1 pm)	MATH 2104	Arts		ZOOL 2008	Th E	(10-1 pm)	ZOOL 2008	Th E	(10-1 pm)								
11.00	STAT 2203/4	Th A	Pharmacol.	BIOC 2003/4	Th D		STAT 2203/4	Th E	Chemistry	MATH 2203	Th D	Zool 2008	BOTN 2003	Th B						
			(10-1 pm)	GEOL 2004	ID				(10-1 pm)			(11-1 pm)	MAPH 2041	L124						
			Botany	PSY 2203	L124				Zool 2008				MAPH 2141	Th F						
_			(11-1 pm)						(11-1 pm)				PHAR 2003/4	Th E						
12.00	EXPH 2002	ID		BOTN 2004	Th C		MATH 2102	Arts		PHAR 2003/4	Th D		GEOL 2003	ID						
				MAPH 2041	Th E								PSY 2202	L124						
				MAPH 2131	L104								BIOC 2003/4	Th B						
				PHAR 2003/4	Th F															
13.00	STAT 2203/4	ThA		MAPH 2021	L104		STAT 2203/4	Th E		MATH 2204	Th B		MATH 2204	Th D						
	BIOC 2003/4	Th B		MAPH 2141	L124															
				ZOOL 2007	Th E															
14.00	MAPH 2021	L124		GEOL 2003	ID		BIOC 2003/4	Th D		Ind. Micro.	Th E		CHEM 2003/4	Th B						
	MAPH 2131	L104		Ind. Micro.	Th E		GEOL 2004	ID		COMP 2004	Th D		STAT 2206/7	Arts						
	MATH 2104	Arts		PSY 2204	L124					PHYS 2005/7	ET									
	ZOOL 2007	Th E						-												
15.00	COMP 2003	Th E	C.Science			C.Science	STAT 2206/7	Arts	C.Science	MATH 2102	Arts	Ind. Micro.	BOTN 2004	Th D	Chemistry					
			(3-5 pm)			(3-5 pm)			(3-5 pm)			(3-5.30 pm)			(3-6 pm)					
			Physiology			Geology			Geology			Biochem.			Pharmacol.					
			(3-5.30 pm)			(3-5 pm)			(3-5 pm)			(3-6 pm)			(3-6 pm)					
			Chemistry			Ind.Micro.			Biochem.			Chemistry			Botany					
16.00			(3-6 pm)	STAT 2206/7	Arts	(3-5.30 pm)			(3-6 pm)	COMP 2003	Th E	(3-6 pm)			(4-6 pm)					
			Zool 2007			Pharmacol.			Chemistry			Exp.Phys.								
			(4-6 pm)			(3-6 pm)			(3-6 pm)			(3-6 pm)								
									Exp.Phys.			Physiology								
									(3-6 pm)			(3-5 pm)								
									Pharmacol.											
									(3-6 pm)											

(Lectures and Practicals)

NOTE: Practical classes are held in the relevant Department; ID = Lecture held in relevant Department; ET = Lecture held in Earlsfort Terrace; Arts = Lecture held in Arts Building. Allocation of students to practical classes will be made by the relevant Department.

THIRD SCIENCE TIMETABLE (2000-2001) – FIRST SEMESTER

Time		MONDAY			TUESDA	Y	W	EDNESI	DAY		THURSDA	Y		FRIDA	Y
	Lectures	Loc.	Practicals	Lectures	Loc.	Practicals	Lectures	Loc.	Practicals	Lectures	Loc.	Practicals	Lectures	Loc.	Practicals
09.00	BIOC 3004 COMP 3004 STAT 3208	Th F Th E Arts		EXPH 3010 MAPH 3021 PHYS 3002/3	ID L104 ET	BIOC 3004 (9-12 noon) GENE 3001 (9-12 noon) INDM 3001	BOTN 3003 COMP 3004 EXPH 3010 GEOL 3006 PHAR 3002	ID Th E ID L123		CHEM 3003 COMP 3001 MAPH 3021 PHYS 3002/3	EP129 Th E L104 ET	BIOC 3001 (9-12 noon) BOTN 3005 (9-11 am) GEOL 3002	COMP 3009 INDM 3001 MAPH 3011 STAT 3210	Th F ID L104 DB	
10.00	CHEM 3006 COMP 3008 PSY 3207 ZOOL 3002	L124 Th F Arts L123	BOTN 3002 (10-12 noon) GEOL 3006 (10-12 noon)	EXPH 3002 GEOL 3006	ID ID	(9-12 noon) Psychology	STAT 3208 BOTN 3005 CHEM 3001 MATH 3203 ZOOL 3008	Arts ID Th C L124 L101		MATH 3203	L124	(9-11 am) INDM 3002 (9-12 noon) PHAR 3005-6 (10-1 pm)	EXPH 3009 PSY 3207 STAT 3221	ID Arts Th D	
11.00	CHEM 3003 INDM 3007/5 MATH 3203 MAPH 3011 PSY 3204 ZOOL 3006	Th D ID L123 L104 Arts Th F	(10 12 1001)	EXPH 3004 EXPH 3006 PHAR 3005	ID ID Th F		GEOL 3005 PSY 3204 STAT 3221	ID Arts Th F		EXPH 3009 GEOL 3002 MATH 3208 PHAR 3005 PHYS 3009	ID ID L123 Th F ET	BOTN 3005 (11-1 pm) Psychology	CHEM 3001 INDM 3007 PSY 3203 ZOOL 3008	Th A ID Arts L101	
12.00	BOTN 3002 EXPH 3004 EXPH 3006 MATH 3208 PHAR 3001	ID ID ID L123 Th E		GENE 3001 MAPH 3071	Th C Th E		BIOC 3001 GEOL 3001 INDM 3005 INDM 3007 MATH 3202 MATH 3204	Th B ID ID L124 L123		BOTN 3010 COMP 3007 INDM 3005 MATH 3202 MATH 3204 ZOOL 3003	ID Th C ID L104 L124 Th B		BOTN 3001 COMP 3007 EXPH 3002 PHAR 3002	ID Th D ID Th F	
13.00	MATH 3202 MATH 3204 MAPH 3071 ZOOL 3003	L123 L124 L104 Th E		PHIL 3901	L123		CHEM 3006 GENE 3001 MAPH 3071 MATH 3208	Th F Th A L124 Eng.		BIOC 3001 COMP 3009 ZOOL 3006	Th E Th D Th F		PHIL 3901	L123	
14.00	BIOC 3006 INDM 3002 PHY 3002/3 PSY 3201	ID ID ET Arts	Chemistry (2-5 pm) PHAR 3001-4 (2.30-5.30 pm)	BIOC 3004 COMP 3008	Th D Th B	BOTN 3003 (2-5 pm) Chemistry (2-5 pm) PHAR 3001-4	CHEM 3003 PSY 3201	Th A Arts	BOTN 3005 (2-4 pm)	GEOL 3005 STAT 3218	ID ID	BIOC 3001 (2-5 pm) BOTN 3010 (2- 5 pm) Chemistry	BIOC 3008 GEOL 3001 PHYS 3009 PSY 3203 STAT 3205/6	ID ID ET Arts Arts	Chemistry (2-5 pm) BIOC 3008 (3-6 pm)
15.00	PSY 3208 STAT 3218	Arts ID	BIOC 3006 (3-6 pm) BOTN 3001 (3-6 pm)	ZOOL 3002	Th D	(2.30-5.30 pm) BIOC 3004 (3-6 pm) ExpPhysics (3-5 pm)	BIOC 3008 GEOL 3002 PHAR 3001 PSY 3002 STAT 3205/6	Th E ID Th D Arts Arts	Chemistry (3-6 pm) ZOOL 3003 (3-5 pm)			(2-5 pm) GEOL 3005 (2-4 pm) PHAR 3001-4 (2.30-5.30 pm)			GENE 3001 (3-6 pm) GEOL 3001 (3-5 pm) INDM 3005/7
16.00	PSY 3208	Arts	INDM 3005/7 (3-6 pm) PHAR 3005-6 (3-6 pm) Physiology (3-5.30 pm)	STAT 3205/6	Arts	PHAR 3005-6 (3-6 pm) ZOOL 3002 (4-6 pm) CompScience Psychology	BIOC 3006 COMP 3001	Th E Th F				PHAR 3005-6 (2.30-5.30 pm) ExpPhysics (3-5 pm) ZOOL 3006 (3-5 pm) Psychology			(3-6 pm) Physiology (3-5.30 pm)

NOTE: Practical classes are held in the relevant Department; ID = Lecture held in relevant Department; ET = Lecture held in Earlsfort Terrace. Arts Building. DB = Daedelus Building, Eng = Engineering Building.

Time	M	IONDAY	-	Т	UESDA	Y	WI	EDNESD	AY	TE	IURSD.	AY	FRIDAY		
	Lectures	Loc	Practicals	Lectures	Loc	Practicals	Lectures	Loc	Practicals	Lectures	Loc	Practicals	Lectures	Loc	Practicals
09:00	BIOC 3003	ThD		GEOL 3013	ID	BIOC 3003	EXPH 3003	ID	GENE 3002/3	COMP 3002	ThE	BIOC 3002	COMP 3003	ThF	GEOL 3009
	COMP 3003	ThE		MAPH 3041	L104	(9-12 noon)	INDM 3008/6	ID	(9-12 noon)	PHYS 3004/5	ET	(9-12 noon)	INDM 3004	ID	(9-11 am)
	GEOL 3009	ID		PHYS 3004/5	ET	INDM 3004	MAPH 3081	L104	GEOL 3010			BOTN 3008	MAPH 3041	L104	
	STAT 3209	Arts				(9-12 noon)	STAT 3209	Arts	(9-11 am)			(9-12 noon) GEOL 3003	PHYS 3006/7	ET	
												(9-11 am)	STAT 3210	DB	
10:00	CHEM 3012	ID		EXPH 3012	ID	GEOL 3013	BOTN 3007 GEOL 3013	ID ID		MATH 3207	L124	INDM 3003	BIOC 3007	ThE	
	EXPH 3001 GEOL 3009	ID ID		EXPH 3015 GEOL 3010	ID ID	(10-12 noon)	PHAR 3006/7	L124				(9-12 noon)	BOTN 3006 CHEM 3004	ID L123	
	INDM 3008/6	ID ID		PHAR 3004	L123		MATH 3207	L124				PHAR 3005-6	MATH 3207	ThD	1
	MAPH 3081	L104		111111 3004	2125	Psychology		-				(9-12 noon) CELB 3001	PHAR 3006/7	L104	
	ZOOL 3001	ThF				Psychology						(10-12 noon)	PHYS 3006/7	ET	
												(10 12 1001)	PSY 3207	Arts	
													ZOOL 3004	L101	
11:00	BOTN 3008	ID		EXPH 3001	ID		CHEM 3005	ThF		GEOL 3008	ID		CHEM 3005	ThA	
	CELB 3001	ID		EXPH 3008	ID		EXPH 3008	ID		MATH 3201	L124		GENE 3002	ThC	
	CHEM 3002	ThD					PSY 3205	Arts					GEOL 3010	ID	
	GEOL 3008 PSY 3205	ID Arts					STAT 3224	ID					MAPH 3031 PSY 3206	L104 Arts	
12:00	BIOC 3002	ThE	-	COMP 3011	Th B		BIOC 3003	ThB		EXPH 3003	ID		BOTN 3004	ID	
12.00	GEOL 3003	ID		GEOL 3004	ID		COMP 3006	Th D		INDM 3008/6	ID		EXPH 3005	ID	
	MAPH 3031	L104		MAPH 3081	L124		GEOL 3004	ID		PHAR 3003	ThC		MAPH 3081	L104	
										STAT 3224	ID		PHAR 3003	Th F	
13:00	CHEM 3004	ThC		BOTN 3008	ID		PHAR 3004	ThF		BIOC 3002	ThD		CHEM 3015	Th F	
	COMP 3011	ThD		CHEM 3015	Th D		ZOOL 3007	ThD		COMP 3005	ThC		COMP 3006	Th C	
	GENE 3003	L124		COMP 3005	ThC					PHAR 3006/7	ThE		GENE 3003	L123	
	ZOOL 3005	ThE		MATH 3201 PHAR 3007	L123 ThF								MATH 3201	L124	
14:00	BIOC 3007	ID	-	BIOC 3005	ThF		CHEM 3002	ThB		GEOL 3007	ID	BIOC 3002	BIOC 3005	ThD	Chemistry
14.00	MATH 3205	L123	Chemistry	GEOL 3007	ID	Chemistry	COMP 3002	ThC		GEOL 5007	ш	(2-5 pm)	GEOL 3003	ID	(2-5 pm)
	PHYS 3004/5	ET	(2-5 pm)	ZOOL 3005	ThC	(2-5 pm)	GENE 3002	L124				Chemistry	INDM 3003	ID	
	PSY 3208	Arts				PHAR 3001-4 (2.30-5.30 pm)						(2-5 pm)	PHYS 3006/7	ET	BIOC 3005
	STAT 3220	ThF	PHAR 3001-4 (2.30-5.30 pm)			(2.30-3.30 pm) PHAR 3005-6						PHAR3001-4	PSY 3206	Arts	(3-6 pm)
	ZOOL 3004	ThC	PHAR 3005-6			(2.30-5.30 pm)						(2.30-5.30 pm) PHAR 3005-6	STAT 3220 STAT 3206/07	ThE Arts	Physiology
			(2.30-5.30 pm)			/						(2.30-5.30 pm)	STAT 5200/07	Alts	(3-5.30 pm)
												(ZOOL 3004
			DIOC 2007			BIOC 3003						BOTN 3004			(3-5 pm)
15:00	PSY 3208	Arts	BIOC 3007 (3-6 pm)	MATH 3207	ThB	(3-6 pm)	EXPH 3005	ID	BOTN 3006	MATH 3205	L123	(3-6 pm)			
			BOTN 3007	ZOOL 3007	ThE	ExpPhys	PSY 3202	Arts	(3-6 pm) Chemistry			ExpPhys (3-5 pm)			
			(3-5 pm)			(3-5 pm)	STAT 3206/07	Arts	(3-6 pm)			GEOL 3007			
			GEOL 3008			ZOOL 3007	ZOOL 3001	ThE	GENE 3002/3			(3-5 pm)			
			(3-5 pm)			(3-5 pm)			(3-6 pm)						
			INDM 3006/8 (3-6 pm)			GEOL 3004			INDM 3006/8			Psychology			
			(3-6 pm) Physiology			(4-6 pm)			(3-6 pm) ZOOL 3001						
16:00			(3-5.30 pm)	STAT 3206/07	Arts	CompSc	MATH 3205	L123	(4-6 pm)						
10.00				5111 5200/07	1110			2123	(. o piii)						
	s : Lecture theat	·		L	۱ <u>ــــــــــــــــــــــــــــــــــــ</u>			L		L	·		1	I	

THIRD SCIENCE TIMETABLE 2000-2001 – SECOND SEMESTER

Locations : Lecture theatres and class rooms in the Science Complex are indicated ThA or L124. ID = in the subject department. Arts = Arts Building. ET = Earlsfort Tee. DB = Daedalus Building.